Direct detection of electronic states for individual indium arsenide (InAs) quantum dots grown by molecular beam epitaxy

被引:12
作者
Abbas, Yawar [1 ]
Wen, Boyu [2 ]
Wasilewski, Zbig [2 ]
Ban, Dayan [2 ]
Rezeq, Moh'd [1 ]
机构
[1] Khalifa Univ Sci Technol, Dept Phys, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DIODE; LASER; SEMICONDUCTORS; THRESHOLD; MEMORY;
D O I
10.1016/j.apsusc.2022.153046
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Indium arsenide (InAs) quantum dots (QDs) have been characterized using a conductive-mode atomic force microscope (C-AFM), where a well-defined gold-coated AFM probe has been used to electrically probe each individual QD. The InAs QDs were grown on a gallium arsenide (GaAs) substrate in a self-assembled manner by using molecular beam epitaxy (MBE). The measured current-voltage (I-V) curves of individual QDs exhibit a typical Schottky diode behavior, which can be attributed to the metal/semiconductor junction between the AFM gold probe and the n-doped GaAs bulk. However, distinct I-V curves are observed in sequential measurements, where a less forward turn-on voltage is measured in the subsequent voltage sweeps compared to the initial sweep. However, this effect is not evident when the same measurements are conducted on a plane surface (in the absence of QDs) on the same substrate. The discrete voltage values at the forward bias on a QD indicates a change in the electronic states due to trapped electrons in the QD during the initial voltage sweep. These unique characteristics of QDs can be exploited for potential applications in fast-response data storage devices and quantum computing.
引用
收藏
页数:8
相关论文
共 31 条
[11]   Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide [J].
Kou, Liangzhi ;
Ma, Yandong ;
Tan, Xin ;
Frauenheim, Thomas ;
Du, Aijun ;
Smith, Sean .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (12) :6918-6922
[12]   A theoretical model for predicting Schottky-barrier height of the nanostructured silicide-silicon junction [J].
Lee, Jaehyun ;
Kim, Seungchul ;
Shin, Mincheol .
APPLIED PHYSICS LETTERS, 2017, 110 (23)
[13]   The incredible shrinking circuit - Researchers have built nanotransistors and nanowires. Now they just need to find a way to put them all together [J].
Lieber, CM .
SCIENTIFIC AMERICAN, 2001, 285 (03) :58-64
[14]   Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well [J].
Liu, GT ;
Stintz, A ;
Li, H ;
Malloy, KJ ;
Lester, LF .
ELECTRONICS LETTERS, 1999, 35 (14) :1163-1165
[15]   Nanogenerators based on vertically aligned InN nanowires [J].
Liu, Guocheng ;
Zhao, Songrui ;
Henderson, Robert D. E. ;
Leonenko, Zoya ;
Abdel-Rahman, Eihab ;
Mi, Zetian ;
Ban, Dayan .
NANOSCALE, 2016, 8 (04) :2097-2106
[16]   Thin-Film Quantum Dot Photodiode for Monolithic Infrared Image Sensors [J].
Malinowski, Pawel E. ;
Georgitzikis, Epimitheas ;
Maes, Jorick ;
Vamvaka, Ioanna ;
Frazzica, Fortunato ;
Van Olmen, Jan ;
De Moor, Piet ;
Heremans, Paul ;
Hens, Zeger ;
Cheyns, David .
SENSORS, 2017, 17 (12)
[17]   Solution-processed PbS quantum dot infrared photodetectors and photovoltaics [J].
McDonald, SA ;
Konstantatos, G ;
Zhang, SG ;
Cyr, PW ;
Klem, EJD ;
Levina, L ;
Sargent, EH .
NATURE MATERIALS, 2005, 4 (02) :138-142
[18]   Materials for Future Quantum Dot-Based Memories [J].
Nowozin, T. ;
Bimberg, D. ;
Daqrouq, K. ;
Ajour, M. N. ;
Awedh, M. .
JOURNAL OF NANOMATERIALS, 2013, 2013
[19]   Case study of an InAs quantum dot memory: Optical storing and deletion of charge [J].
Pettersson, H ;
Baath, L ;
Carlsson, N ;
Seifert, W ;
Samuelson, L .
APPLIED PHYSICS LETTERS, 2001, 79 (01) :78-80
[20]  
Rakhlin M., 2018, SCI REP-UK, V8, P1