On geometrically defined extensions of the Temperley-Lieb category in the Brauer category

被引:2
|
作者
Kadar, Z. [1 ]
Martin, P. P. [1 ]
Yu, S.
机构
[1] Univ Leeds, Dept Pure Math, Leeds, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
SCHUR-WEYL DUALITY; REPRESENTATION-THEORY; ALGEBRAS; CONSTRUCTION; RECOLLEMENT; TOWERS; WENZL; BASES;
D O I
10.1007/s00209-019-02246-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1247 / 1276
页数:30
相关论文
共 50 条
  • [1] On geometrically defined extensions of the Temperley–Lieb category in the Brauer category
    Z. Kádár
    P. P. Martin
    S. Yu
    Mathematische Zeitschrift, 2019, 293 : 1247 - 1276
  • [2] Entanglement and the Temperley-Lieb category
    Brannan, Michael
    Collins, Benoit
    TOPOLOGICAL PHASES OF MATTER AND QUANTUM COMPUTATION, 2020, 747 : 27 - 50
  • [3] Fusion and monodromy in the Temperley-Lieb category
    Belletete, Jonathan
    Saint-Aubin, Yvan
    SCIPOST PHYSICS, 2018, 5 (04):
  • [4] A CYCLIC APPROACH TO THE ANNULAR TEMPERLEY-LIEB CATEGORY
    Penneys, David
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2012, 21 (06)
  • [5] Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors
    Stroppel, C
    DUKE MATHEMATICAL JOURNAL, 2005, 126 (03) : 547 - 596
  • [6] Temperley-Lieb algebras at roots of unity, a fusion category and the Jones quotient
    Iohara, K.
    Lehrer, G., I
    Zhang, R. B.
    MATHEMATICAL RESEARCH LETTERS, 2019, 26 (01) : 121 - 158
  • [7] Boundary weights for Temperley-Lieb and dilute Temperley-Lieb models
    Behrend, RE
    Pearce, PA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (23): : 2833 - 2847
  • [8] Temperley-Lieb immanants
    Rhoades, Brendon
    Skandera, Mark
    ANNALS OF COMBINATORICS, 2005, 9 (04) : 451 - 494
  • [9] Temperley-Lieb Crystals
    Nguyen, Son
    Pylyavskyy, Pavlo
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2025, 2025 (07)
  • [10] Temperley-Lieb Immanants
    Brendon Rhoades
    Mark Skandera
    Annals of Combinatorics, 2005, 9 : 451 - 494