Progression age enhanced backward bifurcation in an epidemic model with super-infection

被引:138
作者
Martcheva, M
Thieme, HR
机构
[1] Polytech Univ, Dept Math, Brooklyn, NY 11201 USA
[2] Arizona State Univ, Dept Math, Tempe, AZ 85287 USA
关键词
backward bifurcation; multiple endemic equilibria; alternating stability; break-point density; super-infection; dose-dependent latent period; progressive and quiescent latent stages; progression age structure; threshold type disease activation; operator semigroups; Hille-Yosida operators; dynamical systems; persistence; global compact attractor;
D O I
10.1007/s00285-002-0181-7
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider a model for a disease with a progressing and a quiescent exposed class and variable susceptibility to super-infection. The model exhibits backward bifurcations under certain conditions, which allow for both stable and unstable endemic states when the basic reproduction number is smaller than one.
引用
收藏
页码:385 / 424
页数:40
相关论文
共 47 条
[1]  
ANDERSON R M, 1991
[2]   The dynamics of cocirculating influenza strains conferring partial cross-immunity [J].
Andreasen, V ;
Lin, J ;
Levin, SA .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (07) :825-842
[3]  
[Anonymous], 1983, APPL MATH SCI, DOI DOI 10.1007/978-1-4612-5561-1
[4]  
[Anonymous], 1995, APPL MATH MONOGRAPHS
[5]  
Arendt W., 1986, LECT NOTES MATH, V1184
[6]  
BAILEY NT, 1975, MATH THEORY INFECT D
[7]  
Blower S, 1998, INNOV APPL MATH, P51
[8]   THE INTRINSIC TRANSMISSION DYNAMICS OF TUBERCULOSIS EPIDEMICS [J].
BLOWER, SM ;
MCLEAN, AR ;
PORCO, TC ;
SMALL, PM ;
HOPEWELL, PC ;
SANCHEZ, MA ;
MOSS, AR .
NATURE MEDICINE, 1995, 1 (08) :815-821
[9]   Control strategies for tuberculosis epidemics: New models for old problems [J].
Blower, SM ;
Small, PM ;
Hopewell, PC .
SCIENCE, 1996, 273 (5274) :497-500
[10]  
Castillo-Chavez C, 2002, IMA VOL MATH APPL, V126, P261