Optimal Sublinear Algorithms for Matching and Vertex Cover

被引:17
作者
Behnezhad, Soheil [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
来源
2021 IEEE 62ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2021) | 2022年
关键词
COMPUTATION; WEIGHT; MODEL; TIME;
D O I
10.1109/FOCS52979.2021.00089
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of estimating the size of maximum matching and minimum vertex cover in sublinear time. Denoting the number of vertices by n and the average degree in the graph by (d) over bar, we obtain the following results for both problems which are all provably time-optimal up to polylogarithmic factors:(1) A multiplicative (2+epsilon)-approximation that takes (O) over tilde (n/epsilon(2)) time using adjacency list queries. A multiplicative-additive (2, epsilon n)-approximation that takes (O) over tilde (((d) over bar/epsilon(2)) time using adjacency list queries. A multiplicative-additive (2, epsilon n)-approximation that takes (O) over tilde/epsilon(3)) time using adjacency list queries. Our main contribution and the key ingredient of the bounds above is a near-tight analysis of the average query complexity of randomized greedy maximal matching which improves upon a seminal result of Yoshida, Yamamoto, and Ito [STOC'09].
引用
收藏
页码:873 / 884
页数:12
相关论文
共 27 条
[1]  
Alon Noga, 2012, P 23 ANN ACM SIAM S, P1132
[2]  
Assadi S, 2019, Disc Algorithms, P767
[3]   Parallel Graph Algorithms in Constant Adaptive Rounds: Theory meets Practice [J].
Behnezhad, Soheil ;
Dhulipala, Laxman ;
Esfandiari, Hossein ;
Lacki, Jakub ;
Mirrokni, Vahab ;
Schudy, Warren .
PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 13 (13) :3588-3602
[4]   Massively Parallel Computation via Remote Memory Access [J].
Behnezhad, Soheil ;
Dhulipala, Laxman ;
Esfandiari, Hossein ;
Lacki, Jakub ;
Mirrokni, Vahab ;
Schudy, Warren .
SPAA'19: PROCEEDINGS OF THE 31ST ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURESS, 2019, 2019, :59-68
[5]  
Behnezhad Soheil, 2021, ABS210602942 CORR
[6]  
Blelloch Guy E, 2012, SPAA 12 P 24 ANN ACM, P308, DOI DOI 10.1145/2312005.2312058
[7]  
Bringmann K, 2014, LECT NOTES COMPUT SC, V8572, P247
[8]   Unconditional Lower Bounds for Adaptive Massively Parallel Computation [J].
Charikar, Moses ;
Ma, Weiyun ;
Tan, Li-Yang .
PROCEEDINGS OF THE 32ND ACM SYMPOSIUM ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES (SPAA '20), 2020, :141-151
[9]   Approximating the minimum spanning tree weight in sublinear time [J].
Chazelle, B ;
Rubinfeld, R ;
Trevisan, L .
SIAM JOURNAL ON COMPUTING, 2005, 34 (06) :1370-1379
[10]  
Chen Yu, 2020, 47 INT C AUT LANG PR