Bilinear estimates in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations

被引:64
作者
Kozono, H [1 ]
Shimada, Y
机构
[1] Tohoku Univ, Inst Math, Sendai, Miyagi 9808578, Japan
[2] 77 Bank, Nakake Cho Branch, Sendai, Miyagi 9808691, Japan
关键词
Navier-Stokes equations; Triebel-Lizorkin space; Littlewood-Paley decomposition;
D O I
10.1002/mana.200310213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall show that every strong solution u(t) of the Navier-Stokes equations on (0, T) can be continued beyond t > T provided u is an element of L (2)/(1-alpha) (0, T; F-infinity,infinity(-alpha)) for 0 < alpha < 1, where F-p,q(s) denotes the homogeneous Triebel-Lizorkin space. As a byproduct of our continuation theorem, we shall generalize a well-known criterion due to Serrin on regularity of weak solutions. Such a bilinear estimate F-p1,q1(-alpha) boolean AND F-p2,q2(s+alpha) 1/P = 1/p1 + 1/p(2), 1/q = 1/q, + 1/q(2) as the Hblder type inequality plays an important role for our results. (C) 2004 WILEY-VCH Vertag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 26 条
[2]  
[Anonymous], 1991, CBMS REGIONAL C SERI
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
CANNONE M, 1995, THESIS U PARIS 9 CER
[5]   On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces [J].
Chae, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (05) :654-678
[6]   DISPERSION OF SMALL AMPLITUDE SOLUTIONS OF THE GENERALIZED KORTEWEG-DEVRIES EQUATION [J].
CHRIST, FM ;
WEINSTEIN, MI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :87-109
[7]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[8]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281
[9]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[10]   NAVIER-STOKES FLOW IN R3 WITH MEASURES AS INITIAL VORTICITY AND MORREY SPACES [J].
GIGA, Y ;
MIYAKAWA, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (05) :577-618