Backdoor sets of quantified Boolean formulas

被引:0
作者
Samer, Marko [1 ]
Szeider, Stefan [2 ]
机构
[1] Tech Univ Darmstadt, Darmstadt, Germany
[2] Univ Durham, Durham DH1 3HP, England
来源
THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2007, PROCEEDINGS | 2007年 / 4501卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We generalize the notion of backdoor sets from propositional formulas to quantified Boolean formulas in conjunctive normal form (QCNF). We develop parameterized algorithms that admit uniform polynomial time QCNF evaluation parameterized by the size of smallest strong backdoor sets. For our algorithms we develop a theory of variable dependency which is of independent interest. As a result, we obtain hierarchies of classes of tractable QCNF formulas with the classes of quantified Horn and quantified 2CNF formulas, respectively, at their first level, thus gradually generalizing these two prominent tractable classes. In contrast to known tractable classes based on bounded treewidth, the number of quantifier alternations of our classes is unbounded.
引用
收藏
页码:230 / +
页数:3
相关论文
共 28 条
[1]   LINEAR-TIME ALGORITHM FOR TESTING THE TRUTH OF CERTAIN QUANTIFIED BOOLEAN FORMULAS [J].
ASPVALL, B ;
PLASS, MF ;
TARJAN, RE .
INFORMATION PROCESSING LETTERS, 1979, 8 (03) :121-123
[2]  
Benedetti M, 2005, LECT NOTES COMPUT SC, V3569, P378
[3]  
Biere A, 2005, LECT NOTES COMPUT SC, V3542, P59
[4]  
Buning Hans Kleine, 1999, Cambridge Tracts in Theoretical Computer Science, V48
[5]   RESOLUTION FOR QUANTIFIED BOOLEAN-FORMULAS [J].
BUNING, HK ;
KARPINSKI, M ;
FLOGEL, A .
INFORMATION AND COMPUTATION, 1995, 117 (01) :12-18
[6]  
DOWNEY R, 1999, PARAMETERIZED COMPLE
[7]  
EGLY U, 2002, P SAT02 WORKSH THEOR, P48
[8]  
Flum J., 2006, Parameterized Complexity Theory
[9]  
HOFFMANN J, 2006, P 16 INT C AUT PLANN, P284
[10]  
INTERIAN Y, 2003, P 6 INT C THEOR APPL, P231