共 55 条
Toward an Enhanced Human-Machine Interface for Upper-Limb Prosthesis Control With Combined EMG and NIRS Signals
被引:81
作者:
Guo, Weichao
[1
]
Sheng, Xinjun
[1
]
Liu, Honghai
[1
,2
]
Zhu, Xiangyang
[1
]
机构:
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[2] Univ Portsmouth, Sch Comp, Portsmouth PO1 3HE, Hants, England
基金:
中国国家自然科学基金;
关键词:
Near-infrared spectroscopy (NIRS);
pattern recognition;
prosthesis control;
sensor fusion;
surface electromyography (EMG);
TIME MYOELECTRIC CONTROL;
SURFACE EMG;
HAND;
CLASSIFICATION;
EXTRACTION;
STRATEGY;
FOREARM;
SCHEME;
D O I:
10.1109/THMS.2016.2641389
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Advanced myoelectric prosthetic hands are currently limited due to the lack of sufficient signal sources on amputation residual muscles and inadequate real-time control performance. This paper presents a novel human-machine interface for prosthetic manipulation that combines the advantages of surface electromyography (EMG) and near-infrared spectroscopy (NIRS) to overcome the limitations of myoelectric control. Experiments including 13 able-bodied and three amputee subjects were carried out to evaluate both offline classification accuracy (CA) and online performance of the forearm motion recognition system based on three types of sensors (EMG-only, NIRS-only, and hybrid EMG-NIRS). The experimental results showed that both the offline CA and real-time performance for controlling a virtual prosthetic hand were significantly (p < 0.05) improved by combining EMG and NIRS. These findings suggest that fusion of EMG and NIRS is feasible to improve the control of upper-limb prostheses, without increasing the number of sensor nodes or complexity of signal processing. The outcomes of this study have great potential to promote the development of dexterous prosthetic hands for transradial amputees.
引用
收藏
页码:564 / 575
页数:12
相关论文