High thermally conductive PLA based composites with tailored hybrid network of hexagonal boron nitride and graphene nanoplatelets

被引:60
|
作者
Mosanenzadeh, Shahriar Ghaffari [1 ]
Khalid, Saad [1 ]
Cui, Yi [1 ]
Naguib, Hani E. [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
POLYMER COMPOSITES; MECHANICAL-PROPERTIES; NANOFIBERS;
D O I
10.1002/pc.23398
中图分类号
TB33 [复合材料];
学科分类号
摘要
Bio-based polymers and multifunctional polymeric composites are promising for the development of new environmentally sustainable materials and are becoming increasingly popular compared to their oil based counterparts. This research aims to develop new multifunctional bio-based polymer composites with improved thermal conductivity and tailored electrical properties to be used as heat management materials in the electronics industry. A series of parametric studies were conducted to clarify the science behind the hybrid composites' behavior and their structure-to-property relationships. Using bio-based polymers [e.g., polylactic acid (PLA)] as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (hBN) and graphene nanoplatelets (GNP) in a PLA matrix. The effects of random uniform thermal hybrid networks of hBN-GNP on improving the effective thermal conductivity (k(eff)) of produced composites were studied and compared. Composites were characterized with respect to physical, thermal, electrical, and mechanical properties for practical application in the electronics industry. The use of high thermally conductive hybrid filler systems, with optimized filler content, was found to promote the composites' effective thermal conductivity to more than 12 times over neat PLA. The thermally conductive composite is expected to provide unique opportunities to injection mold three-dimensional, net-shape, lightweight, and eco-friendly microelectronic enclosures with superior heat dissipation performance. POLYM. COMPOS., 37:2196-2205, 2016. (c) 2015 Society of Plastics Engineers
引用
收藏
页码:2196 / 2205
页数:10
相关论文
共 50 条
  • [1] Polymer composites based on hexagonal boron nitride and their application in thermally conductive composites
    Yu, Cuiping
    Zhang, Jun
    Tian, Wei
    Fan, Xiaodong
    Yao, Yagang
    RSC ADVANCES, 2018, 8 (39): : 21948 - 21967
  • [2] Controllable exfoliation of hexagonal boron nitride and tailored three-dimensional network for highly thermally conductive polymer composites
    Lin, Jing
    Dong, Jin
    Chen, Bing
    Liang, Jiayuan
    Zhang, Hebai
    He, Zhenguo
    He, Jiafa
    Zhong, Rongjian
    Liang, Xuyun
    Hu, Dechao
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (10)
  • [3] Controllable exfoliation of hexagonal boron nitride and tailored three-dimensional network for highly thermally conductive polymer composites
    Lin, Jing
    Dong, Jin
    Chen, Bing
    Liang, Jiayuan
    Zhang, Hebai
    He, Zhenguo
    He, Jiafa
    Zhong, Rongjian
    Liang, Xuyun
    Hu, Dechao
    Journal of Applied Polymer Science, 1600, 141 (10):
  • [4] Thermally conductive hexagonal boron nitride/spherical aluminum oxide hybrid composites fabricated with epoxyorganosiloxane
    Lim, Gayoung
    Bok, Goseong
    Park, Seong-Dae
    Kim, Youngmin
    CERAMICS INTERNATIONAL, 2022, 48 (01) : 1408 - 1414
  • [5] Development of High Thermally Conductive and Electrically Insulative Polylactic Acid (PLA) and Hexagonal Boron Nitride (hBN) Composites for Electronic Packaging Applications
    Ghaffari, Shahriar
    Khalid, Saad
    Butler, Mark
    Naguib, Hani E.
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2015, 9 (02) : 145 - 154
  • [6] Thermally conductive composites based on hexagonal boron nitride nanosheets for thermal management: Fundamentals to applications
    Wu, Wentong
    Zheng, Mingsheng
    Liu, Feng
    Song, Yan-Hui
    Liu, Maochang
    Dang, Zhi-Min
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2023, 169
  • [7] Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects
    Zhang, Yi
    Niu, Haoting
    Liyun, Wu
    Wang, Nanyang
    Xu, Tao
    Zhou, Zhengyang
    Xie, Yufeng
    Wang, Han
    He, Qian
    Zhang, Kai
    Yao, Yagang
    NANO EXPRESS, 2021, 2 (04):
  • [8] Thermally Conductive Hexagonal Boron Nitride/Polymer Composites for Efficient Heat Transport
    Yao, Chengning
    Leahu, Grigore
    Holicky, Martin
    Liu, Sihui
    Fenech-Salerno, Benji
    Lai, May Ching
    Larciprete, Maria Cristina
    Ducati, Caterina
    Divitini, Giorgio
    Voti, Roberto Li
    Sibilia, Concita
    Torrisi, Felice
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (46)
  • [9] Formation of thermally conductive networks in isotactic polypropylene/hexagonal boron nitride composites via "Bridge Effect" of multi-wall carbon nanotubes and graphene nanoplatelets
    Zhong, Shi-Long
    Zhou, Zheng-Yong
    Zhang, Kai
    Shi, Yu-Dong
    Chen, Yi-Fu
    Chen, Xu-Dong
    Zeng, Jian-Bing
    Wang, Ming
    RSC ADVANCES, 2016, 6 (101): : 98571 - 98580
  • [10] Thermal conductivity and mechanical properties of thermally conductive composites based on multifunctional epoxyorganosiloxanes and hexagonal boron nitride
    Yun, Hyesun
    Han, Chul Jong
    Park, Jeong Beom
    Kim, Youngmin
    CERAMICS INTERNATIONAL, 2022, 48 (17) : 24431 - 24438