Control of molecular doping in conjugated polymers by thermal annealing

被引:22
作者
Fujimoto, Ryo [1 ]
Watanabe, Shun [1 ,2 ]
Yamashita, Yu [1 ]
Tsurumi, Junto [1 ]
Matsui, Hiroyuki [1 ,3 ]
Kushida, Tomokatsu [1 ]
Mitsui, Chikahiko [1 ]
Yi, Hee Taek [4 ]
Podzorov, Vitaly [4 ,5 ]
Takeya, Jun [1 ]
机构
[1] Univ Tokyo, Grad Sch Frontier Sci, Dept Adv Mat Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[3] Yamagata Univ, Grad Sch Organ Mat Sci, Res Ctr Organ Elect ROEL, 4-3-16 Jonan, Yonezawa, Yamagata 9928510, Japan
[4] Rutgers State Univ, Dept Phys & Astron, Piscataway, NJ 08854 USA
[5] Rutgers State Univ, Inst Adv Mat Devices & Nanotechnol IAMDN, Piscataway, NJ 08854 USA
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
Organic semiconductors; Doping; Hall effect; CONDUCTING POLYMERS; HOPPING TRANSPORT; CHARGE-TRANSPORT; HIGH-MOBILITY; TRANSITION; SOLITONS; STATE;
D O I
10.1016/j.orgel.2017.05.019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Doping is one of the most fundamental building blocks for semiconductor processing, and enables adaptation to both charge concentration and electrical conductivity. Despite attempts to investigate various doping and de-doping methods for organic semiconductors over many years, their use has been limited to date. Here, we present a method to precisely control the degree of doping in dopant-implanted thiophene-based polymeric conductors. A simple post annealing at a relatively low temperature of approximately 110 degrees C can significantly diminish the charge carrier concentration with precision, where the controllability is evaluated comprehensively using electron spin resonance and optical absorption techniques. At higher doping regimes, a band-like charge transport with an ideal Hall effect and weak localization is confirmed. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:139 / 146
页数:8
相关论文
共 38 条
[1]  
Ando K, 2013, NAT MATER, V12, P622, DOI [10.1038/NMAT3634, 10.1038/nmat3634]
[2]  
[Anonymous], 2003, CHEM COMMUN
[3]   Localized charge transfer in a molecularly doped conducting polymer [J].
Aziz, Emad E. ;
Vollmer, Antje ;
Eisebitt, Stefan ;
Eberhardt, Wolfgang ;
Pingel, Patrick ;
Neher, Dieter ;
Koch, Norbert .
ADVANCED MATERIALS, 2007, 19 (20) :3257-+
[4]  
Brabec CJ, 2001, ADV FUNCT MATER, V11, P15, DOI 10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO
[5]  
2-A
[6]  
Bubnova O, 2011, NAT MATER, V10, P429, DOI [10.1038/NMAT3012, 10.1038/nmat3012]
[7]   Reflectance of conducting poly(3,4-ethylenedioxythiophene) [J].
Chang, YH ;
Lee, K ;
Kiebooms, R ;
Aleshin, A ;
Heeger, AJ .
SYNTHETIC METALS, 1999, 105 (03) :203-206
[8]   High-Resolution ac Measurements of the Hall Effect in Organic Field-Effect Transistors [J].
Chen, Y. ;
Yi, H. T. ;
Podzorov, V. .
PHYSICAL REVIEW APPLIED, 2016, 5 (03)
[9]   Molecular Interactions and Ordering in Electrically Doped Polymers: Blends of PBTTT and F4TCNQ [J].
Cochran, Justin E. ;
Junk, Matthias J. N. ;
Glaudell, A. M. ;
Miller, P. Levi ;
Cowart, John S. ;
Toney, Michael F. ;
Hawker, Craig J. ;
Chmelka, Bradley F. ;
Chabinyc, Michael L. .
MACROMOLECULES, 2014, 47 (19) :6836-6846
[10]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418