Smooth DNA Transport through a Narrowed Pore Geometry

被引:83
作者
Carson, Spencer [1 ]
Wilson, James [2 ]
Aksimentiev, Aleksei [2 ]
Wanunu, Meni [1 ,3 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
[2] Univ Illinois, Dept Phys, Urbana, IL USA
[3] Northeastern Univ, Dept Chem & Chem Biol, Boston, MA 02115 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
TRANSLATIONAL DIFFUSION-COEFFICIENTS; DRIVEN POLYMER TRANSLOCATION; SINGLE-STRANDED-DNA; MOLECULAR-DYNAMICS; NANOPORE SENSORS; ACCESS RESISTANCE; DISCRIMINATION; ACID; CONFORMATION; FRAGMENTS;
D O I
10.1016/j.bpj.2014.10.017
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Voltage-driven transport of double-stranded DNA through nanoscale pores holds much potential for applications in quantitative molecular biology and biotechnology, yet the microscopic details of translocation have proven to be challenging to decipher. Earlier experiments showed strong dependence of transport kinetics on pore size: fast regular transport in large pores (> 5 nm diameter), and slower yet heterogeneous transport time distributions in sub-5 nm pores, which imply a large positional uncertainty of the DNA in the pore as a function of the translocation time. In this work, we show that this anomalous transport is a result of DNA self-interaction, a phenomenon that is strictly pore-diameter dependent. We identify a regime in which DNA transport is regular, producing narrow and well-behaved dwell-time distributions that fit a simple drift-diffusion theory. Furthermore, a systematic study of the dependence of dwell time on DNA length reveals a single power-law scaling of 1.37 in the range of 35-20,000 bp. We highlight the resolution of our nanopore device by discriminating via single pulses 100 and 500 bp fragments in a mixture with >98% accuracy. When coupled to an appropriate sequence labeling method, our observation of smooth DNA translocation can pave the way for high-resolution DNA mapping and sizing applications in genomics.
引用
收藏
页码:2381 / 2393
页数:13
相关论文
共 119 条
[1]   Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules [J].
Akeson, M ;
Branton, D ;
Kasianowicz, JJ ;
Brandin, E ;
Deamer, DW .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3227-3233
[2]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[3]   Deciphering ionic current signatures of DNA transport through a nanopore [J].
Aksimentiev, Aleksei .
NANOSCALE, 2010, 2 (04) :468-483
[5]   pH Tuning of DNA Translocation Time through Organically Functionalized Nanopores [J].
Anderson, Brett N. ;
Muthukumar, Murugappan ;
Meller, Amit .
ACS NANO, 2013, 7 (02) :1408-1414
[6]   Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations [J].
Batcho, PF ;
Case, DA ;
Schlick, T .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (09) :4003-4018
[7]   Scaling exponents of forced polymer translocation through a nanopore [J].
Bhattacharya, A. ;
Morrison, W. H. ;
Luo, K. ;
Ala-Nissila, T. ;
Ying, S. -C. ;
Milchev, A. ;
Binder, K. .
EUROPEAN PHYSICAL JOURNAL E, 2009, 29 (04) :423-429
[8]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[9]   Automated Fabrication of 2-nm Solid-State Nanopores for Nucleic Acid Analysis [J].
Briggs, Kyle ;
Kwok, Harold ;
Tabard-Cossa, Vincent .
SMALL, 2014, 10 (10) :2077-2086
[10]   Selective Detection and Quantification of Modified DNA with Solid-State Nanopores [J].
Carlsen, Autumn T. ;
Zahid, Osama K. ;
Ruzicka, Jan A. ;
Taylor, Ethan W. ;
Hall, Adam R. .
NANO LETTERS, 2014, 14 (10) :5488-5492