Bohr Radius for Some Classes of Harmonic Mappings

被引:3
|
作者
Gangania, K. [1 ]
Kumar, S. Sivaprasad [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 03期
关键词
Bohr radius; Harmonic mappings; Univalent analytic functions; Growth theorem; UNIVALENT-FUNCTIONS; SUBCLASS; THEOREM;
D O I
10.1007/s40995-022-01304-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, we introduce a general class of sense-preserving harmonic mappings defined as follows: B-H(0)(M) := {f = h + (g) over bar : Sigma(m=2)(gamma(m)vertical bar a(m)vertical bar + delta(m)vertical bar b(m)vertical bar) <= M, M > 0}, where h(z) = z + Sigma(infinity)(m=2) a(m)Z(m), g(z) = Sigma(infinity)(m=2) b(m)z(m) are analytic functions in D := {z is an element of C : vertical bar z vertical bar <= 1} and gamma(m), delta(m) >= alpha(2) := min{gamma(2), delta(2)} > 0, for all m >= 2. We obtain Growth Theorem, Covering Theorem, and derive the Bohr radius for the class B-H(0) (M). As an application of our results, we obtain the Bohr radius for many classes of harmonic univalent functions and some classes of univalent functions.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 50 条
  • [31] Some classes of harmonic mappings with analytic part defined by subordination
    Li, Shuhai
    Ma Li-Na
    En, Ao
    Huo, Tang
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 172 - 185
  • [32] Bohr Radius for Pluriharmonic Mappings in Separable Complex Hilbert Spaces
    Hidetaka Hamada
    Tatsuhiro Honda
    Bulletin of the Malaysian Mathematical Sciences Society, 2024, 47
  • [33] Bohr's phenomenon in subordination and bounded harmonic classes
    Abu Muhanna, Yusuf
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (11) : 1071 - 1078
  • [34] Bohr Inequalities in Some Classes of Analytic Functions
    Ismagilov A.A.
    Kayumova A.V.
    Kayumov I.R.
    Ponnusamy S.
    Journal of Mathematical Sciences, 2021, 252 (3) : 360 - 373
  • [35] The Bohr Radius of a Banach Space
    Blasco, Oscar
    VECTOR MEASURES, INTEGRATION AND RELATED TOPICS, 2010, 201 : 59 - 64
  • [36] ON CERTAIN CLASSES OF P-HARMONIC MAPPINGS
    Qiao, Jin-Jing
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 225 - 235
  • [37] Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin
    Huang, Yong
    Liu, Ming-Sheng
    Ponnusamy, Saminathan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
  • [38] Bohr-Type Inequalities for Harmonic Mappings with a Multiple Zero at the Origin
    Yong Huang
    Ming-Sheng Liu
    Saminathan Ponnusamy
    Mediterranean Journal of Mathematics, 2021, 18
  • [39] On Bohr's inequality for special subclasses of stable starlike harmonic mappings
    Jin, Wei
    Liu, Zhihong
    Hu, Qian
    Zhang, Wenbo
    OPEN MATHEMATICS, 2023, 21 (01):
  • [40] Radius properties of harmonic mappings with fixed analytic part
    Kamaljeet Gangania
    Monatshefte für Mathematik, 2023, 202 : 317 - 334