Bohr Radius for Some Classes of Harmonic Mappings

被引:3
|
作者
Gangania, K. [1 ]
Kumar, S. Sivaprasad [1 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Delhi 110042, India
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 03期
关键词
Bohr radius; Harmonic mappings; Univalent analytic functions; Growth theorem; UNIVALENT-FUNCTIONS; SUBCLASS; THEOREM;
D O I
10.1007/s40995-022-01304-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this note, we introduce a general class of sense-preserving harmonic mappings defined as follows: B-H(0)(M) := {f = h + (g) over bar : Sigma(m=2)(gamma(m)vertical bar a(m)vertical bar + delta(m)vertical bar b(m)vertical bar) <= M, M > 0}, where h(z) = z + Sigma(infinity)(m=2) a(m)Z(m), g(z) = Sigma(infinity)(m=2) b(m)z(m) are analytic functions in D := {z is an element of C : vertical bar z vertical bar <= 1} and gamma(m), delta(m) >= alpha(2) := min{gamma(2), delta(2)} > 0, for all m >= 2. We obtain Growth Theorem, Covering Theorem, and derive the Bohr radius for the class B-H(0) (M). As an application of our results, we obtain the Bohr radius for many classes of harmonic univalent functions and some classes of univalent functions.
引用
收藏
页码:883 / 890
页数:8
相关论文
共 50 条