A Truncation Model for Estimating Species Richness

被引:0
作者
Koladjo, Babagnide Francois [1 ]
Ohannessian, Mesrob, I [2 ]
Gassiat, Elisabeth [3 ]
机构
[1] Univ Parakou, ENSPD, Parakou, Benin
[2] Toyota Technol Inst Chicago, Chicago, IL USA
[3] Univ Paris Sud, Univ Paris Saclay, Lab Math Orsay, CNRS, F-91405 Orsay, France
关键词
species richness; semiparametric model; model selection; abundance distribution; NONPARAMETRIC MLE; ESTIMATING SIZE; NUMBER; SAMPLE; HETEROGENEITY; INEQUALITIES; COVERAGE;
D O I
10.1515/ijb-2017-0035
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a truncation model for the abundance distribution in species richness estimation. This model is inherently semiparametric and incorporates an unknown truncation threshold between rare and abundant observations. Using the conditional likelihood, we derive a class of estimators for the parameters in this model by stepwise maximization. The species richness estimator is given by the integer maximizing the binomial likelihood, given all other parameters in the model. Under regularity conditions, we show that our estimators of the model parameters are asymptotically efficient. We recover Chaos lower bound estimator of species richness when the parametric part of the model is single-component Poisson. Thus our class of estimators strictly generalized the latter. We illustrate the performance of the proposed method in a simulation study, and compare it favorably to other widely-used estimators. We also give an application to estimating the number of distinct vocabulary words in French playwright Moliere's Tartuffe.
引用
收藏
页数:22
相关论文
共 27 条
[1]   Bayesian Estimation of the Number of Species using Noninformative Priors [J].
Barger, Kathryn ;
Bunge, John .
BIOMETRICAL JOURNAL, 2008, 50 (06) :1064-1076
[2]   Concentration inequalities in the infinite urn scheme for occupancy counts and the missing mass, with applications [J].
Ben-Hamou, Anna ;
Boucheron, Stephane ;
Ohannessian, Mesrob I. .
BERNOULLI, 2017, 23 (01) :249-287
[3]   A Generalization of Chao's Estimator for Covariate Information [J].
Boehning, Dankmar ;
Vidal-Diez, Alberto ;
Lerdsuwansri, Rattana ;
Viwatwongkasem, Chukiat ;
Arnold, Mark .
BIOMETRICS, 2013, 69 (04) :1033-1042
[4]   A COVARIATE ADJUSTMENT FOR ZERO-TRUNCATED APPROACHES TO ESTIMATING THE SIZE OF HIDDEN AND ELUSIVE POPULATIONS [J].
Boehning, Dankmar ;
van der Heuden, Peter G. M. .
ANNALS OF APPLIED STATISTICS, 2009, 3 (02) :595-610
[5]   Nonparametric maximum likelihood estimation of population size based on the counting distribution [J].
Böhning, D ;
Schön, D .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2005, 54 :721-737
[6]   Parametric Models for Estimating the Number of Classes [J].
Bunge, John ;
Barger, Kathryn .
BIOMETRICAL JOURNAL, 2008, 50 (06) :971-982
[7]  
CHAO A, 1984, SCAND J STAT, V11, P265
[8]   Estimating the number of species in a Stochastic abundance model [J].
Chao, A ;
Bunge, J .
BIOMETRICS, 2002, 58 (03) :531-539
[9]   STOPPING RULES AND ESTIMATION FOR RECAPTURE DEBUGGING WITH UNEQUAL FAILURE RATES [J].
CHAO, A ;
MA, MC ;
YANG, MCK .
BIOMETRIKA, 1993, 80 (01) :193-201
[10]   ESTIMATING THE NUMBER OF CLASSES VIA SAMPLE COVERAGE [J].
CHAO, A ;
LEE, SM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :210-217