Bayesian classification and class area estimation of satellite images using stratification

被引:34
|
作者
Gorte, B [1 ]
Stein, A [1 ]
机构
[1] Int Inst Aerosp Survey & Earth Sci ITC, NL-7500 AA Enschede, Netherlands
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 03期
关键词
Bayes procedures; image classification; MAP estimation; remote sensing;
D O I
10.1109/36.673673
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper describes an iterative extension to maximum a posteriori (MAP) supervised classification methods. A posteriori probabilities per class are used for classification as well as to obtain class area estimates. From these, an updated set of prior probabilities is calculated and used in the next iteration, The process converges to statistically correct area estimates, The iterative process can be combined effectively with a stratification of the image, which is made on the basis of additional map data, Moreover, it relies on the sample sets being representative. Therefore, the method is shown to be well applicable in combination with an existing GIS. The paper gives a description of the procedure and provides a mathematical foundation. An example is presented to distinguish residential, industrial, and greenhouse classes. A significant improvement of the classification was obtained.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 50 条
  • [41] Estimating land cover class area from remote sensing classification
    Chauhan, Hasmukh J.
    Arora, Manoj K.
    Agarwal, Anshul
    JOURNAL OF APPLIED REMOTE SENSING, 2008, 2
  • [42] Landuse change detection in a surface coal mine area using multi-temporal high-resolution satellite images
    Demirel, Nuray
    Duzgun, Sebnem
    Emil, Mustafa Kemal
    INTERNATIONAL JOURNAL OF MINING RECLAMATION AND ENVIRONMENT, 2011, 25 (04) : 342 - 349
  • [43] The Classification of Tropical Storm Systems in Infrared Geostationary Weather Satellite Images Using Transfer Learning
    Senior-Williams, Jacob
    Hogervorst, Frank
    Platen, Erwin
    Kuijt, Arie
    Onderwaater, Jacobus
    Tervo, Roope
    John, Viju O.
    Okuyama, Arata
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5234 - 5244
  • [44] Crop Classification of Satellite Imagery Using Synthetic Multitemporal and Multispectral Images in Convolutional Neural Networks
    Siesto, Guillermo
    Fernandez-Sellers, Marcos
    Lozano-Tello, Adolfo
    REMOTE SENSING, 2021, 13 (17)
  • [45] Automated classification of remote sensing satellite images using deep learning based vision transformer
    Adegun, Adekanmi
    Viriri, Serestina
    Tapamo, Jules-Raymond
    APPLIED INTELLIGENCE, 2024, 54 (24) : 13018 - 13037
  • [46] Mapping Permanent Gullies in an Agricultural Area Using Satellite Images: Efficacy of Machine Learning Algorithms
    Phinzi, Kwanele
    Holb, Imre
    Szabo, Szilard
    AGRONOMY-BASEL, 2021, 11 (02):
  • [47] Methods of Land Cover Classification Using Worldview-3 Satellite Images in Land Management
    Panda, Lovre
    Radocaj, Dorijan
    Milosevic, Rina
    TEHNICKI GLASNIK-TECHNICAL JOURNAL, 2024, 18 (01): : 142 - 147
  • [48] Global and direct solar irradiance estimation using deep learning and selected spectral satellite images
    Chen, Shanlin
    Li, Chengxi
    Xie, Yuying
    Li, Mengying
    APPLIED ENERGY, 2023, 352
  • [49] ESTIMATION OF THE CHANGES IN WATER SURFASE AREA BASED ON THE USE OF ARCHIVES SATELLITE IMAGES OF LANDSAT SATELLITES (ON THE EXAMPLE OF THE ERTIS RIVER)
    Tolepbayeva, A. K.
    Tanbayeva, A. A.
    Karagulova, R. K.
    Iskaliyeva, G. M.
    Zhakupova, A. A.
    Urazbayeva, G. M.
    Lentschke, J.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES OF GEOLOGY AND TECHNICAL SCIENCES, 2020, (03): : 79 - 87
  • [50] Satellite Imagery Classification Using Shallow and Deep Learning Approaches
    Sainos-Vizuett, Michelle
    Hussein Lopez-Nava, Irvin
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 163 - 172