Bayesian classification and class area estimation of satellite images using stratification

被引:34
|
作者
Gorte, B [1 ]
Stein, A [1 ]
机构
[1] Int Inst Aerosp Survey & Earth Sci ITC, NL-7500 AA Enschede, Netherlands
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 1998年 / 36卷 / 03期
关键词
Bayes procedures; image classification; MAP estimation; remote sensing;
D O I
10.1109/36.673673
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The paper describes an iterative extension to maximum a posteriori (MAP) supervised classification methods. A posteriori probabilities per class are used for classification as well as to obtain class area estimates. From these, an updated set of prior probabilities is calculated and used in the next iteration, The process converges to statistically correct area estimates, The iterative process can be combined effectively with a stratification of the image, which is made on the basis of additional map data, Moreover, it relies on the sample sets being representative. Therefore, the method is shown to be well applicable in combination with an existing GIS. The paper gives a description of the procedure and provides a mathematical foundation. An example is presented to distinguish residential, industrial, and greenhouse classes. A significant improvement of the classification was obtained.
引用
收藏
页码:803 / 812
页数:10
相关论文
共 50 条
  • [21] Vulnerability study on a large industrial area using satellite remotely sensed images
    Borzi, Barbara
    Dell'Acqua, Fabio
    Faravelli, Marta
    Gamba, Paolo
    Lisini, Gianni
    Onida, Mauro
    Polli, Diego
    BULLETIN OF EARTHQUAKE ENGINEERING, 2011, 9 (02) : 675 - 690
  • [22] A Supervised Segmentation Algorithm for Crop Classification Based on Histograms Using Satellite Images
    Oliva, Francisco E.
    Dalmau, Oscar S.
    Alarcon, Teresa E.
    HUMAN-INSPIRED COMPUTING AND ITS APPLICATIONS, PT I, 2014, 8856 : 327 - 335
  • [23] Ensemble method using real images, metadata and synthetic images for control of class imbalance in classification
    Rogers Aloo
    Atsuko Mutoh
    Koichi Moriyama
    Tohgoroh Matsui
    Nobuhiro Inuzuka
    Artificial Life and Robotics, 2022, 27 : 796 - 803
  • [24] Ensemble method using real images, metadata and synthetic images for control of class imbalance in classification
    Aloo, Rogers
    Mutoh, Atsuko
    Moriyama, Koichi
    Matsui, Tohgoroh
    Inuzuka, Nobuhiro
    ARTIFICIAL LIFE AND ROBOTICS, 2022, 27 (04) : 796 - 803
  • [25] Landuse change detection in a surface coal mine area using multi temporal high resolution satellite images
    Demirel, Nuray
    Duzgun, Sebnem
    Emil, Mustafa Kemal
    12TH INTERNATIONAL SYMPOSIUM ON ENVIRONMENTAL ISSUES AND WASTE MANAGEMENT IN ENERGY AND MINERAL PRODUCTION - SWEMP 2010, 2010, : 66 - 72
  • [26] An automatic cloud region classification of satellite image by using clustering in local area
    Ozawa, N
    Aoki, T
    Kato, N
    Nemoto, Y
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2003, 86 (06): : 33 - 43
  • [27] ESTIMATION OF THERMAL CHARACTERISTICS OF WASTE DISPOSAL SITES USING LANDSAT SATELLITE IMAGES
    Richter, Andrey
    Kazaryan, Maretta
    Shakhramanyan, Mihail
    Nedkov, Roumen
    Borisova, Denitsa
    Stankova, Nataliya
    Ivanova, Iva
    Zaharinova, Mariana
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2017, 70 (02): : 253 - 262
  • [28] Tree crown cover estimation using high resolution multispectral satellite images
    Valdez-Lazalde, J. Rene
    Gonzalez-Guillen, Manuel de J.
    Santos-Posadas, Hector M. de los
    AGROCIENCIA, 2006, 40 (03) : 383 - 394
  • [29] CROP AREA ESTIMATION IN UKRAINE USING SATELLITE DATA WITHIN THE MARS PROJECT
    Kussul, Nataliia
    Skakun, Sergii
    Shelestov, Andrii
    Kravchenko, Oleksii
    Gallego, Javier Francisco
    Kussul, Olga
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3756 - 3759
  • [30] Characterization of a Bayesian Ship Detection Method in Optical Satellite Images
    Proia, Nadia
    Page, Vincent
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2010, 7 (02) : 226 - 230