Doping and planar defects in the formation of single-crystal ZnO nanorings

被引:84
作者
Ding, Y
Kong, XY
Wang, ZL [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Natl Ctr Nanosci & Technol, Beijing 100080, Peoples R China
关键词
D O I
10.1103/PhysRevB.70.235408
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We have recently reported the growth of freestanding, single-crystal, seamless nanorings of zinc oxide via a spontaneous self-coiling process during the growth of polar-nanobelts [X.Y. Kong , Science 303, 1348 (2004)]. The nanoring is made by coaxial and uniradius loop-by-loop winding of a fine ZnO nanobelt. An important fact is that each and every nanoring is made of a nanobelt that contains basal-plane planar defects, which are suggested to be important for leading the fastest growth of the nanobelt as well as lowering its elastic deformation energy. In this paper, high-resolution transmission electron microscopy is applied to investigate the nature of the planar defects in the nanobelts and in nanorings. The planar defects were initiated and formed by single-layer segregation of the doping element, such as indium, which was introduced in the growth process. The accumulation of impurity ions forms two vicinal In-O octahedral layers parallel to the basal plane. They form "head-to-head" and "tail-to-tail" polar-inversion domain boundaries. For a nanobelt that self-coils into a nanoring, we found that the head-to-head and tail-to-tail polar-inversion domain boundaries are paired, thus, the polarity of the nanobelt is unchanged. Therefore, our data support the proposed model [X.Y. Kong , Science 303, 1348 (2004)] that the nanoring is initiated by circularly folding a nanobelt due to long-range electrostatic interaction between the surface polar charges on the two sides, and a loop-by-loop winding of the nanobelt forms a complete ring.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 24 条
[1]   Spontaneous polarization and piezoelectric constants of III-V nitrides [J].
Bernardini, F ;
Fiorentini, V ;
Vanderbilt, D .
PHYSICAL REVIEW B, 1997, 56 (16) :10024-10027
[2]   NEW INTERGROWTH PHASES IN THE ZNO-IN2O3 SYSTEM [J].
CANNARD, PJ ;
TILLEY, RJD .
JOURNAL OF SOLID STATE CHEMISTRY, 1988, 73 (02) :418-426
[3]  
Corso A.D., 1994, PHYS REV B, V50, P10715, DOI DOI 10.1103/PHYSREVB.50.10715
[4]   THE SCATTERING OF ELECTRONS BY ATOMS AND CRYSTALS .1. A NEW THEORETICAL APPROACH [J].
COWLEY, JM ;
MOODIE, AF .
ACTA CRYSTALLOGRAPHICA, 1957, 10 (10) :609-619
[5]   Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn [J].
Dulub, O ;
Diebold, U ;
Kresse, G .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4-016102
[6]   STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000(1)over-bar)-O, (10(1)over-bar0), and (11(2)over-bar0) surfaces [J].
Dulub, O ;
Boatner, LA ;
Diebold, U .
SURFACE SCIENCE, 2002, 519 (03) :201-217
[7]   Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst [J].
Gao, PX ;
Ding, Y ;
Wang, IL .
NANO LETTERS, 2003, 3 (09) :1315-1320
[8]   PROPERTIES OF LITHIUM-DOPED HYDROTHERMALLY GROWN SINGLE CRYSTALS OF ZINC OXIDE [J].
KOLB, ED ;
LAUDISE, RA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1965, 48 (07) :342-&
[9]   Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts [J].
Kong, XY ;
Ding, Y ;
Yang, R ;
Wang, ZL .
SCIENCE, 2004, 303 (5662) :1348-1351
[10]   Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts [J].
Kong, XY ;
Wang, ZL .
NANO LETTERS, 2003, 3 (12) :1625-1631