Decoding HMMs using the k best paths: algorithms and applications

被引:9
作者
Brown, Daniel G. [1 ]
Golod, Daniil [1 ]
机构
[1] Univ Waterloo, Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
来源
BMC BIOINFORMATICS | 2010年 / 11卷
基金
加拿大自然科学与工程研究理事会;
关键词
IDENTIFICATION; TOPOLOGY; PROTEINS;
D O I
10.1186/1471-2105-11-S1-S28
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Traditional algorithms for hidden Markov model decoding seek to maximize either the probability of a state path or the number of positions of a sequence assigned to the correct state. These algorithms provide only a single answer and in practice do not produce good results. Results: We explore an alternative approach, where we efficiently compute the k paths of highest probability to explain a sequence and then either use those paths to explore alternative explanations for a sequence or to combine them into a single explanation. Our procedure uses an online pruning technique to reduce usage of primary memory. Conclusion: Out algorithm uses much less memory than naive approach. For membrane proteins, even simple path combination algorithms give good explanations, and if we look at the paths we are combining, we can give a sense of confidence in the explanation as well. For proteins with two topologies, the k best paths can give insight into both correct explanations of a sequence, a feature lacking from traditional algorithms in this domain.
引用
收藏
页数:7
相关论文
共 14 条
[1]   The universal protein resource (UniProt) [J].
Bairoch, A ;
Apweiler, R ;
Wu, CH ;
Barker, WC ;
Boeckmann, B ;
Ferro, S ;
Gasteiger, E ;
Huang, HZ ;
Lopez, R ;
Magrane, M ;
Martin, MJ ;
Natale, DA ;
O'Donovan, C ;
Redaschi, N ;
Yeh, LSL .
NUCLEIC ACIDS RESEARCH, 2005, 33 :D154-D159
[2]  
BREJOVA B, 2004, P WABI, P426
[3]  
Durbin R., 1998, Analysis, V356, DOI [10.1017/CBO9780511790492, DOI 10.1017/CBO9780511790492]
[4]   Finding the k shortest paths [J].
Eppstein, D .
SIAM JOURNAL ON COMPUTING, 1998, 28 (02) :652-673
[5]   A new decoding algorithm for hidden Markov models improves the prediction of the topology of all-beta membrane proteins [J].
Fariselli, P ;
Martelli, PL ;
Casadio, R .
BMC BIOINFORMATICS, 2005, 6 (Suppl 4)
[6]  
Golod Daniil, 2009, Journal of Bioinformatics and Computational Biology, V7, P737, DOI 10.1142/S0219720009004242
[7]  
Golod Daniil., 2009, THESIS U WATERLOO
[8]   An HMM posterior decoder for sequence feature prediction that includes homology information [J].
Käll, L ;
Krogh, A ;
Sonnhammer, ELL .
BIOINFORMATICS, 2005, 21 :I251-I257
[9]   A combined transmembrane topology and signal peptide prediction method [J].
Käll, L ;
Krogh, A ;
Sonnhammer, ELL .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 338 (05) :1027-1036
[10]  
Krogh A, 1997, ISMB-97 - FIFTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY, PROCEEDINGS, P179