Visual Analytics Meets Process Mining: Challenges and Opportunities

被引:9
作者
Gschwandtner, Theresia [1 ]
机构
[1] Vienna Univ Technol, CVAST, Vienna, Austria
来源
DATA-DRIVEN PROCESS DISCOVERY AND ANALYSIS, SIMPDA 2015 | 2017年 / 244卷
关键词
Visual process mining; Visual analytics; Challenges; VISUALIZATIONS; DEFINITION; SEQUENCES;
D O I
10.1007/978-3-319-53435-0_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Event data or traces of activities often exhibit unexpected behavior and complex relations. Thus, before and during the application of automated analysis methods, such as process mining algorithms, the analyst needs to investigate and understand the data at hand in order to decide which analysis methods might be appropriate. Visual analytics integrates the outstanding capabilities of humans in terms of visual information exploration with the enormous processing power of computers to form a powerful knowledge discovery environment. The combination of visual data exploration with process mining algorithms makes complex information structures more comprehensible and facilitates new insights. In this position paper I portray various concepts of interactive visual support for process mining, focusing on the challenges, but also the great opportunities for analyzing process data with visual analytics methods.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 50 条
[41]   Mining Patterns in Persistent Surveillance Systems with Smart Query and Visual Analytics [J].
Habibi, Mohammad S. ;
Shirkhodaie, Amir .
GEOSPATIAL INFOFUSION III, 2013, 8747
[42]   DART: a visual analytics system for understanding dynamic association rule mining [J].
Zhang, Huijun ;
Chen, Junjie ;
Qiang, Yan ;
Zhao, Juanjuan ;
Xu, Jiangyang ;
Fan, Xiaobo ;
Yang, Yemin ;
Zhang, Xiaolong .
VISUAL COMPUTER, 2021, 37 (02) :341-357
[43]   DART: a visual analytics system for understanding dynamic association rule mining [J].
Huijun Zhang ;
Junjie Chen ;
Yan Qiang ;
Juanjuan Zhao ;
Jiangyang Xu ;
Xiaobo Fan ;
Yemin Yang ;
Xiaolong Zhang .
The Visual Computer, 2021, 37 :341-357
[44]   MyEvents: A Personal Visual Analytics Approach for Mining Key Events and Knowledge Discovery in Support of Personal Reminiscence [J].
Parvinzamir, F. ;
Zhao, Y. ;
Deng, Z. ;
Dong, F. .
COMPUTER GRAPHICS FORUM, 2019, 38 (01) :647-662
[45]   Visual Analytics Opportunities and Usability Assessment of a Resident Clinical Competency Assessment Dashboard [J].
Vennemeyer, Scott ;
Zhang, Ting ;
Warm, Eric J. ;
Wu, Danny T. Y. .
2024 WORKSHOP ON VISUAL ANALYTICS IN HEALTHCARE, VAHC, 2024, :6-9
[46]   Augmenting the educational curriculum with the Visual Analytics Science and Technology Challenge: Opportunities and pitfalls [J].
Rohrdantz, Christian ;
Mansmann, Florian ;
North, Chris ;
Keim, Daniel A. .
INFORMATION VISUALIZATION, 2014, 13 (04) :313-325
[47]   Meeting Big Data challenges with visual analytics The role of records management [J].
Lemieux, Victoria Louise ;
Gormly, Brianna ;
Rowledge, Lyse .
RECORDS MANAGEMENT JOURNAL, 2014, 24 (02) :122-+
[48]   Visual Analytics for Cyber Security Domain: State-of-the-Art and Challenges [J].
Damasevicius, Robertas ;
Toldinas, Jevgenijus ;
Venckauskas, Algimantas ;
Grigaliunas, Sarunas ;
Morkevicius, Nerijus ;
Jukavicius, Vaidas .
INFORMATION AND SOFTWARE TECHNOLOGIES, ICIST 2019, 2019, 1078 :256-270
[49]   Cartographies of the Legal World. Rise and challenges of Visual Legal Analytics [J].
Lettieri, Nicola ;
Malandrino, Delfina .
2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV), 2018, :241-246
[50]   Visual Analytics in Environmental Research: A Survey on Challenges, Methods and Available Tools [J].
Komenda, Martin ;
Schwarz, Daniel .
ENVIRONMENTAL SOFTWARE SYSTEMS: FOSTERING INFORMATION SHARING, 2013, 413 :618-629