Visual Analytics Meets Process Mining: Challenges and Opportunities

被引:5
|
作者
Gschwandtner, Theresia [1 ]
机构
[1] Vienna Univ Technol, CVAST, Vienna, Austria
来源
DATA-DRIVEN PROCESS DISCOVERY AND ANALYSIS, SIMPDA 2015 | 2017年 / 244卷
关键词
Visual process mining; Visual analytics; Challenges; VISUALIZATIONS; DEFINITION; SEQUENCES;
D O I
10.1007/978-3-319-53435-0_7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Event data or traces of activities often exhibit unexpected behavior and complex relations. Thus, before and during the application of automated analysis methods, such as process mining algorithms, the analyst needs to investigate and understand the data at hand in order to decide which analysis methods might be appropriate. Visual analytics integrates the outstanding capabilities of humans in terms of visual information exploration with the enormous processing power of computers to form a powerful knowledge discovery environment. The combination of visual data exploration with process mining algorithms makes complex information structures more comprehensible and facilitates new insights. In this position paper I portray various concepts of interactive visual support for process mining, focusing on the challenges, but also the great opportunities for analyzing process data with visual analytics methods.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 50 条
  • [1] Visual Analytics Meets Process Mining: Challenges and Opportunities
    Miksch, Silvia
    Di Ciccio, Claudio
    Soffer, Pnina
    Weber, Barbara
    Rhyne, Theresa-Marie
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2024, 44 (06) : 132 - 141
  • [2] Visual analytics in healthcare - opportunities and research challenges
    Caban, Jesus J.
    Gotz, David
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (02) : 260 - 262
  • [3] Enabling Interactive Process Analysis with Process Mining and Visual Analytics
    Dixit, P. M.
    Caballero, H. S. Garcia
    Corvo, A.
    Hompes, B. F. A.
    Buijs, J. C. A. M.
    van der Aalst, W. M. P.
    PROCEEDINGS OF THE 10TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF, 2017, : 573 - 584
  • [4] Uncertainty-aware visual analytics: scope, opportunities, and challenges
    Maack, Robin G. C.
    Scheuermann, Gerik
    Hagen, Hans
    Penaloza, Jose Tiberio Hernandez
    Gillmann, Christina
    VISUAL COMPUTER, 2023, 39 (12) : 6345 - 6366
  • [5] Uncertainty-aware visual analytics: scope, opportunities, and challenges
    Robin G. C. Maack
    Gerik Scheuermann
    Hans Hagen
    Jose Tiberio Hernández Peñaloza
    Christina Gillmann
    The Visual Computer, 2023, 39 : 6345 - 6366
  • [6] Process Data Analysis Using Visual Analytics and Process Mining Techniques
    Sitova, Irina
    Pecerska, Jelena
    2020 61ST INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT SCIENCE OF RIGA TECHNICAL UNIVERSITY (ITMS), 2020,
  • [7] Challenges for visual analytics
    Thomas, Jim
    Kielman, Joe
    INFORMATION VISUALIZATION, 2009, 8 (04) : 309 - 314
  • [8] Visual Analytics for model-based medical image segmentation: Opportunities and challenges
    von Landesberger, Tatiana
    Bremm, Sebastian
    Kirschner, Matthias
    Wesarg, Stefan
    Kuijper, Arjan
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (12) : 4934 - 4943
  • [9] Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study
    Martin, Niels
    Fischer, Dominik A.
    Kerpedzhiev, Georgi D.
    Goel, Kanika
    Leemans, Sander J. J.
    Roeglinger, Maximilian
    van der Aalst, Wil M. P.
    Dumas, Marlon
    La Rosa, Marcello
    Wynn, Moe T.
    BUSINESS & INFORMATION SYSTEMS ENGINEERING, 2021, 63 (05) : 511 - 527
  • [10] Opportunities and Challenges for Process Mining in Organizations: Results of a Delphi Study
    Niels Martin
    Dominik A. Fischer
    Georgi D. Kerpedzhiev
    Kanika Goel
    Sander J. J. Leemans
    Maximilian Röglinger
    Wil M. P. van der Aalst
    Marlon Dumas
    Marcello La Rosa
    Moe T. Wynn
    Business & Information Systems Engineering, 2021, 63 : 511 - 527