An auto-encoder based LSTM model for prediction of ambient noise levels

被引:16
作者
Tiwari, S. K. [1 ]
Kumaraswamidhas, L. A. [1 ]
Gautam, C. [2 ]
Garg, N. [2 ]
机构
[1] Indian Inst Technol ISM, Dhanbad 826 001, India
[2] CSIR Natl Phys Lab, New Delhi 110 012, India
关键词
Deep learning; Auto-encoder; LSTM; Data preprocessing; Noise level prediction; Friedman test; ROAD TRAFFIC NOISE; MONITORING NETWORK; NEURAL-NETWORKS; MAJOR CITIES; EXPOSURE; ESTABLISHMENT; DISEASE; ARIMA; RISK;
D O I
10.1016/j.apacoust.2022.108849
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Traffic noise is one of the most prevalent cause of environmental pollution in Indian cities. A reliable method is required for assessment, and prediction of ambient noise levels. This paper presents a novel deep learning model based on Auto-encoder infused with Long short-term memory (LSTM), to predict ambient noise levels. The model automatically selects the best prediction technique by considering dif-ferent combination of hyper-parameters using grid search methodology. It has the ability to inherit non-stationary characteristics of time-series data while considering non-linear pattern. The proposed model is compared with some well-known techniques like Artificial neural technique (ANN), Support vector machine (SVM), Recurrent neural network (RNN), and Long short term memory (LSTM) model. The study concludes that the proposed model outperforms other techniques and can be a reliable approach for time-series prediction of ambient noise levels with an error of +/- 0.563 dB(A). The prediction capability of the models is ascertained by statistical tests parameters namely RMSE, MAE, R-2, and ACC% which is fur-ther validated by Friedman test.(C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] An Auto-Encoder Multitask LSTM Model for Boundary Localization
    Liu, Yu-Ting
    Chen, Jen-Jee
    Tseng, Yu-Chee
    Li, Frank Y.
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10940 - 10953
  • [2] Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks
    Zhang, Bo
    Zhang, Hanwen
    Zhao, Gengming
    Lian, Jie
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 124
  • [3] An Air Pollutant Prediction Model Based on Auto-Encoder Network
    Qin D.
    Ding Z.
    Jin Y.
    Zhao Q.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (05): : 681 - 687
  • [4] Combining Auto-Encoder with LSTM for WiFi-Based Fingerprint Positioning
    Liu, Yu-Ting
    Chen, Jen-Jee
    Tseng, Yu-Chee
    Li, Frank Y.
    30TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2021), 2021,
  • [5] An Auto-Encoder for Learning Conversation Representation Using LSTM
    Zhou, Xiaoqiang
    Hu, Baotian
    Chen, Qingcai
    Wang, Xiaolong
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 310 - 317
  • [6] Dual Auto-Encoder Based Rating Prediction Recommendation Algorithm
    Xin, Gaowei
    Qin, Jiwei
    Song, Xiaoyuan
    Zheng, Jiong
    IEEE ACCESS, 2022, 10 : 97289 - 97297
  • [7] A deep auto-encoder model for gene expression prediction
    Rui Xie
    Jia Wen
    Andrew Quitadamo
    Jianlin Cheng
    Xinghua Shi
    BMC Genomics, 18
  • [8] A deep auto-encoder model for gene expression prediction
    Xie, Rui
    Wen, Jia
    Quitadamo, Andrew
    Cheng, Jianlin
    Shi, Xinghua
    BMC GENOMICS, 2017, 18
  • [9] Auto-Encoder and LSTM-Based Credit Card Fraud Detection
    Sehrawat D.
    Singh Y.
    SN Computer Science, 4 (5)
  • [10] A Deep Learning Method Based on Hybrid Auto-Encoder Model
    Yang, ZhenYu
    Jing, Hui
    PROCEEDINGS OF 2017 IEEE 2ND INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2017, : 1100 - 1104