Optimal control problem for the equation of vibrations of an elastic plate

被引:1
|
作者
Guliyev, Hamlet F. [1 ]
Seyfullaeva, Khayala I. [2 ]
机构
[1] Baku State Univ, Z Khalilov Str 23, AZ-1148 Baku, Azerbaijan
[2] Sumgayit State Univ, Baku Str 1, AZ-5008 Sumgayit, Azerbaijan
关键词
Elastic plate; vibration equation; optimal control; existence theorem;
D O I
10.1515/gmj-2017-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An optimal control problem for the vibration equation of an elastic plate is considered when the control function is included in the coefficient of the highest order derivative and the right-hand side of the equation. The solvability of the initial boundary value problem is shown, the theorem on the existence of an optimal control is proved and a necessary condition of optimality in the form of an integral equation is obtained.
引用
收藏
页码:371 / 379
页数:9
相关论文
共 50 条
  • [1] AN OPTIMAL CONTROL PROBLEM FOR EQUATION OF VIBRATIONS FOR THIN PLATE
    Guliyev, H. F.
    Seyfullayeva, Kh. I.
    PROCEEDINGS OF THE7TH INTERNATIONAL CONFERENCE ON CONTROL AND OPTIMIZATION WITH INDUSTRIAL APPLICATIONS, VOL. 1, 2020, : 170 - 172
  • [2] OPTIMAL CONTROL PROBLEM WITH COEFFICIENTS FOR THE EQUATION OF VIBRATIONS OF A THIN PLATE WITH DISCONTINUOUS SOLUTION
    Guliyev, Hamlet F.
    Seyfullayeva, Khayala I.
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2022, 48 (02): : 238 - 248
  • [3] On the optimal control problem governed by the nonlinear elastic beam equation
    Galewski, Marek
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 203 (02) : 916 - 920
  • [4] Optimal control of vibrations of an elastic beam
    Sun, Bing
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2009, 26 (02) : 151 - 162
  • [5] The Problem of Optimal Control of String Vibrations
    Barsegyan, V. R.
    INTERNATIONAL APPLIED MECHANICS, 2020, 56 (04) : 471 - 480
  • [6] The Problem of Optimal Control of String Vibrations
    V. R. Barsegyan
    International Applied Mechanics, 2020, 56 : 471 - 480
  • [7] Boundary optimal control problem of semi-linear Kirchhoff plate equation
    Bouhamed, Abdelhak
    Elkabouss, Abella
    de Carvalho, Pitagoras P.
    Bouzahir, Hassane
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 80
  • [8] Optimal control problem for deflection plate with crack
    Chuquipoma, J. A. D.
    Raposo, C. A.
    Bastos, W. D.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2012, 18 (03) : 397 - 417
  • [9] Regional Optimal Control Problem for the Vibrating Plate
    Zerrik E.
    Aadi A.A.
    Larhrissi R.
    Journal of Mathematical Sciences, 2023, 276 (2) : 216 - 226
  • [10] Optimal control problem for deflection plate with crack
    J. A. D. Chuquipoma
    C. A. Raposo
    W. D. Bastos
    Journal of Dynamical and Control Systems, 2012, 18 : 397 - 417