Quantum key distribution using multilevel encoding:: security analysis

被引:64
作者
Bourennane, M [1 ]
Karlsson, A
Björk, G
Gisin, N
Cerf, NJ
机构
[1] Univ Munich, Sekt Phys, D-80797 Munich, Germany
[2] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[3] Royal Inst Technol, Dept Microelect & Informat Technol, Electrum 229, SE-16440 Kista, Sweden
[4] Univ Geneva, GAP Opt, Geneva 4, Switzerland
[5] Free Univ Brussels, Ecole Polytech, B-1050 Brussels, Belgium
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2002年 / 35卷 / 47期
关键词
D O I
10.1088/0305-4470/35/47/307
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an extension of quantum key distribution based on encoding the key into quNits, i.e. quantum states in an N-dimensional Hilbert space. We,estimate both the mutual information between the legitimate parties and the eavesdropper, and the error rate, as a function of the dimension of the Hilbert space. We derive the information gained by an eavesdropper using optimal incoherent attacks and an upper bound on the legitimate party error rate that ensures unconditional security when the eavesdropper uses finite coherent eavesdropping attacks. We also consider realistic systems where we assume that the detector dark count probability is not negligible.
引用
收藏
页码:10065 / 10076
页数:12
相关论文
共 30 条
[1]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[2]   Quantum cryptography with 3-state systems [J].
Bechmann-Pasquinucci, H ;
Peres, A .
PHYSICAL REVIEW LETTERS, 2000, 85 (15) :3313-3316
[3]  
BECHMANNPASQUIN.W, 2000, PHYS REV A, V61, DOI ARTN 062308
[4]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[5]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[6]  
Biham E., 2000, Proceedings of the Thirty Second Annual ACM Symposium on Theory of Computing, P715, DOI 10.1145/335305.335406
[7]  
BOURENNANE M, 2001, PHYS REV A, V64
[8]   Quantum-information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit [J].
Braunstein, SL ;
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW A, 2001, 63 (05) :523131-5231310
[9]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[10]   Universal optimal cloning of arbitrary quantum states: From qubits to quantum registers [J].
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :5003-5006