Convergence of natural adaptive least squares finite element methods

被引:13
作者
Carstensen, Carsten [1 ]
Park, Eun-Jae [2 ]
Bringmann, Philipp [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
OPTIMALITY; STANDARD;
D O I
10.1007/s00211-017-0866-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first-order div least squares finite element methods provide inherent a posteriori error estimator by the elementwise evaluation of the functional. In this paper we prove Q-linear convergence of the associated adaptive mesh-refining strategy for a sufficiently fine initial mesh with some sufficiently large bulk parameter for piecewise constant right-hand sides in a Poisson model problem. The proof relies on some modification of known supercloseness results to non-convex polygonal domains plus the flux representation formula. The analysis is carried out for the lowest-order case in two-dimensions for the simplicity of the presentation.
引用
收藏
页码:1097 / 1115
页数:19
相关论文
共 29 条
  • [1] EFFICIENCY BASED ADAPTIVE LOCAL REFINEMENT FOR FIRST-ORDER SYSTEM LEAST-SQUARES FORMULATIONS
    Adler, J. H.
    Manteuffel, T. A.
    McCormick, S. F.
    Nolting, J. W.
    Ruge, J. W.
    Tang, L.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (01) : 1 - 24
  • [2] [Anonymous], THEORY ADAPTIVE FINI
  • [3] MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES
    ARNOLD, DN
    BREZZI, F
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01): : 7 - 32
  • [4] Berndt M., 1997, Electron. Trans. Numer. Anal., V6, P35
  • [5] Adaptive finite element methods with convergence rates
    Binev, P
    Dahmen, W
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 219 - 268
  • [6] Fast computation in adaptive tree approximation
    Binev, P
    DeVore, R
    [J]. NUMERISCHE MATHEMATIK, 2004, 97 (02) : 193 - 217
  • [7] Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
  • [8] Braess D., 2007, FINITE ELEMENTS
  • [9] A note on least-squares mixed finite elements in relation to standard and mixed finite elements
    Brandts, Jan
    Chen, Yanping
    Yang, Julie
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) : 779 - 789
  • [10] Brenner S.C., 2008, MATH THEORY FINITE E, V15