Stable manifolds and the Perron-Irwin method

被引:14
作者
Chaperon, M [1 ]
机构
[1] Univ Paris 07, Inst Math Jussieu Geometrie & Dynam, UFR Math, CASE 7012, F-75251 Paris 05, France
关键词
D O I
10.1017/S0143385703000701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish rather general and simple theorems implying, among other 14 things, the pseudo-(un)stable manifold theorem, Sternberg's theorem on smooth conjugacy between hyperbolic germs of maps or vector fields, and results of Fenichel, Hirsch, Pugh and Shub on existence, uniqueness and structural stability of stable or unstable manifolds at compact invariant manifolds. The Perron-Irwin approach via sequence spaces plays a crucial role.
引用
收藏
页码:1359 / 1394
页数:36
相关论文
共 21 条
[1]  
[Anonymous], ASTERISQUE
[2]  
CHAPERON M, 1993, CR ACAD SCI I-MATH, V317, P87
[3]   Invariant manifolds, conjugacies and blow-up [J].
Chaperon, M ;
Coudray, F .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1997, 17 :783-791
[4]  
CHAPERON M, IN PRESS INVARIANT M
[5]  
CHAPERON M, 1987, PUBL MATH-PARIS, V64, P143
[6]  
Chaperon M., 2002, P STEKLOV I MATH, V236, P415
[7]   BIFURCATION OF INVARIANT TORUS [J].
CHENCINER, A ;
IOOSS, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1979, 69 (02) :109-198
[9]  
Chenciner A., 1988, PUBL MATH-PARIS, V66, P5, DOI DOI 10.1007/BF02698927
[10]  
Chenciner A., 1985, PUBL MATH-PARIS, V61, P67, DOI DOI 10.1007/BF02698803