Nonconforming Mixed Finite Element Method for Time-dependent Maxwell's Equations with ABC

被引:4
作者
Yao, Changhui [1 ]
Shi, Dongyang [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
关键词
Maxwell's equations; Absorbing boundary condition; Nonconforming mixed FEM; Semi-discrete and fully discrete schemes; 2-DIMENSIONAL CURL-CURL; WAVE-PROPAGATION; DISPERSIVE MEDIA;
D O I
10.4208/nmtma.2016.m1427
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a nonconforming mixed finite element method (FEM) is presented to approximate time-dependent Maxwell's equations in a three-dimensional bounded domain with absorbing boundary conditions (ABC). By employing traditional variational formula, instead of adding penalty terms, we show that the discrete scheme is robust. Meanwhile, with the help of the element's typical properties and derivative transfer skills, the convergence analysis and error estimates for semi-discrete and backward Euler fully-discrete schemes are given, respectively. Numerical tests show the validity of the proposed method.
引用
收藏
页码:193 / 214
页数:22
相关论文
共 32 条
[1]  
BONNETBENDHIA AS, 1999, SIAM J APPL MATH, V59, P2028, DOI DOI 10.1137/S0036139997323383
[2]   A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem [J].
Brenner, S. C. ;
Cui, J. ;
Li, F. ;
Sung, L. -Y. .
NUMERISCHE MATHEMATIK, 2008, 109 (04) :509-533
[3]   A locally divergence-free interior penalty method for two-dimensional curl-curl problems [J].
Brenner, Susanne C. ;
Li, Fengyan ;
Sung, Li-Yeng .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (03) :1190-1211
[4]   A locally divergence-free nonconforming finite element method for the time-harmonic Maxwell equations [J].
Brenner, Susanne C. ;
Li, Fengyan ;
Sung, Li-Yeng .
MATHEMATICS OF COMPUTATION, 2007, 76 (258) :573-595
[5]   An adaptive inverse iteration for Maxwell eigenvalue problem based on edge elements [J].
Chen, Junqing ;
Xu, Yifeng ;
Zou, Jun .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (07) :2649-2658
[6]   Convergence analysis of an adaptive edge element method for Maxwell's equations [J].
Chen, Junqing ;
Xu, Yifeng ;
Zou, Jun .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (12) :2950-2969
[7]   Solving Maxwell equations in 3D prismatic domains [J].
Ciarlet, P ;
Garcia, E ;
Zou, J .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) :721-726
[8]   A nonconforming mixed finite element method for Maxwell's equations [J].
Douglas, J ;
Santos, JE ;
Sheen, D .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (04) :593-613
[9]   THE LOCAL L2 PROJECTED C0 FINITE ELEMENT METHOD FOR MAXWELL PROBLEM [J].
Duan, Huo-Yuan ;
Jia, Feng ;
Lin, Ping ;
Tan, Roger C. E. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) :1274-1303
[10]   Absorbing boundary conditions for electromagnetic wave propagation [J].
Feng, XB .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :145-168