RADIAL STABILITY OF PERIODIC SOLUTIONS OF THE GYLDEN-MESHCHERSKII-TYPE PROBLEM

被引:24
作者
Chu, Jifeng [1 ]
Torres, Pedro J. [2 ]
Wang, Feng [1 ]
机构
[1] Hohai Univ, Coll Sci, Dept Math, Nanjing 210098, Jiangsu, Peoples R China
[2] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Radial stability; periodic solutions; Gylden-Meshcherskii-type problem; twist; REPULSIVE SINGULAR EQUATIONS; DIFFERENTIAL-EQUATIONS; NEWTONIAN EQUATION; SYSTEMS; EXISTENCE; ORBITS;
D O I
10.3934/dcds.2015.35.1921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the Gylden-Meshcherskii-type problem with a periodically changing gravitational parameter, we prove the existence of radially periodic solutions with high angular momentum, which are Lyapunov stable in the radial direction.
引用
收藏
页码:1921 / 1932
页数:12
相关论文
共 39 条
[1]  
[Anonymous], 1971, Lectures on celestial mechanics
[2]  
Bekov A. A., 1993, Astronomy Reports, V37, P651
[3]  
Chu JF, 2008, DISCRETE CONT DYN-A, V21, P1071
[4]   Periodic solutions of second order non-autonomous singular dynamical systems [J].
Chu, Jifeng ;
Torres, Pedro J. ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :196-212
[5]   Twist periodic solutions of second order singular differential equations [J].
Chu, Jifeng ;
Li, Ming .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (02) :830-838
[6]  
Dancer E N., 1994, J. Dyn. Differ. Equations, V6, P631, DOI [10.1007/BF02218851, DOI 10.1007/BF02218851]
[7]  
De Coster C., 1996, CISM COURSES LECT, V371, P1
[8]   INFINITELY MANY T-PERIODIC SOLUTIONS FOR A PROBLEM ARISING IN NONLINEAR ELASTICITY [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :260-277
[9]   THE SECULAR ACCELERATIONS IN GYLDEN PROBLEM [J].
DEPRIT, A .
CELESTIAL MECHANICS, 1983, 31 (01) :1-22
[10]   Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach [J].
Fonda, Alessandro ;
Toader, Rodica .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (12) :3235-3264