A posteriori error estimates with point sources in fractional sobolev spaces

被引:6
作者
Gaspoz, F. D. [1 ]
Morin, P. [2 ,3 ,5 ]
Veeser, A. [4 ]
机构
[1] Univ Stuttgart, Inst Angew Math & Numer Simulat, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
[2] Univ Nacl Litoral, CONICET, Inst Matemat Aplicada Litoral, Santa Fe, Argentina
[3] Univ Nacl Litoral, Fac Ingn Quim, Santa Fe, Argentina
[4] Univ Milan, Dipartimento Matemat, Via C Saldini 50, I-20133 Milan, Italy
[5] IMAL Colectora Ruta Nac 168, RA-3000 Paraje El Pozo, Santa Fe, Argentina
关键词
finite element methods; a posteriori error estimators; Dirac mass; adaptivity; fractional Sobolev spaces; FINITE-ELEMENT-METHOD; DIRAC MEASURE TERMS; ELLIPTIC PROBLEMS; WEIGHTED SPACES;
D O I
10.1002/num.22065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Poisson's equation with a finite number of weighted Dirac masses as a source term, together with its discretization by means of conforming finite elements. For the error in fractional Sobolev spaces, we propose residual-type a posteriori estimators with a specifically tailored oscillation and show that, on two-dimensional polygonal domains, they are reliable and locally efficient. In numerical tests, their use in an adaptive algorithm leads to optimal error decay rates. (c) 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1018-1042, 2017
引用
收藏
页码:1018 / 1042
页数:25
相关论文
共 19 条