The lasso for high dimensional regression with a possible change point

被引:90
作者
Lee, Sokbae [1 ,2 ]
Seo, Myung Hwan [1 ,3 ]
Shin, Youngki [4 ]
机构
[1] Seoul Natl Univ, Seoul 151742, South Korea
[2] Inst Fiscal Studies, London, England
[3] London Sch Econ & Polit Sci, London, England
[4] Univ Western Ontario, London, ON, Canada
基金
欧洲研究理事会; 新加坡国家研究基金会;
关键词
Lasso; Oracle inequalities; Sample splitting; Sparsity; Threshold models; NONCONCAVE PENALIZED LIKELIHOOD; QUANTILE REGRESSION; VARIABLE SELECTION; ADAPTIVE LASSO; SHRINKAGE; MODELS; RATES;
D O I
10.1111/rssb.12108
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a high dimensional regression model with a possible change point due to a covariate threshold and develop the lasso estimator of regression coefficients as well as the threshold parameter. Our lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the l(1)-estimation loss for regression coefficients. Since the lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold effect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a factor that is nearly n(-1) even when the number of regressors can be much larger than the sample size n. We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.
引用
收藏
页码:193 / 210
页数:18
相关论文
共 45 条
[1]  
[Anonymous], 2011, Inverse Problems and HighDimensional Estimation, DOI [DOI 10.1007/978-3-642-19989-9_3, DOI 10.1007/978-3-642-19989-9\_3]
[2]  
[Anonymous], ADV NEURAL INFORM PR
[3]  
[Anonymous], 1995, Economic growth, 1995
[4]  
Barro R. J., 1994, DATA SET PANEL 139 C
[5]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[6]   SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR [J].
Bickel, Peter J. ;
Ritov, Ya'acov ;
Tsybakov, Alexandre B. .
ANNALS OF STATISTICS, 2009, 37 (04) :1705-1732
[7]   REGULARIZATION FOR COX'S PROPORTIONAL HAZARDS MODEL WITH NP-DIMENSIONALITY [J].
Bradic, Jelena ;
Fan, Jianqing ;
Jiang, Jiancheng .
ANNALS OF STATISTICS, 2011, 39 (06) :3092-3120
[8]   Penalized composite quasi-likelihood for ultrahigh dimensional variable selection [J].
Bradic, Jelena ;
Fan, Jianqing ;
Wang, Weiwei .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 :325-349
[9]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[10]   Sparsity oracle inequalities for the Lasso [J].
Bunea, Florentina ;
Tsybakov, Alexandre ;
Wegkamp, Marten .
ELECTRONIC JOURNAL OF STATISTICS, 2007, 1 :169-194