THE RAMSEY NUMBER FOR THETA GRAPH VERSUS A CLIQUE OF ORDER THREE AND FOUR

被引:3
作者
Bataineh, M. S. A. [1 ]
Jaradat, M. M. M. [2 ]
Bateeha, M. S. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
[2] Quatar Univ, Dept Math Stat & Phys, Doha, Qatar
关键词
Ramsey number; independent set; theta graph; complete graph;
D O I
10.7151/dmgt.1730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any two graphs F-1 and F-2 the graph Ramsey number r(F-1, F-2) is the smallest positive integer N with the property that every graph on at least N vertices contains F-1 or its complement contains F-2 as a subgraph. In this paper, we consider the Ramsey numbers for theta-complete graphs. We determine r(theta(n), K-m) for m = 2,3,4 and n > m. More specifically, we establish that r(theta(n), K-m) = (n - 1)(m - 1) + 1 for m = 3,4 and n> m.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 8 条
[1]  
Bolze R., 1981, THEORY APPL GRAPHS, P109
[2]  
Boza L., 2010, P 7 JORN MAT DISCR A
[3]   GENERALIZED RAMSEY THEORY FOR GRAPHS .3. SMALL OFF-DIAGONAL NUMBERS [J].
CHVATAL, V ;
HARARY, F .
PACIFIC JOURNAL OF MATHEMATICS, 1972, 41 (02) :335-&
[4]   ALL TRIANGLE-GRAPH RAMSEY NUMBERS FOR CONNECTED GRAPHS OF ORDER-6 [J].
FAUDREE, RJ ;
ROUSSEAU, CC ;
SCHELP, RH .
JOURNAL OF GRAPH THEORY, 1980, 4 (03) :293-300
[5]  
Jaradat M.M.M., 2011, INT J COMBIN, V2011, DOI [10.1155/2011/649687, DOI 10.1155/2011/649687]
[6]  
McNamara J., SUNNY BROCKPOR UNPUB
[7]  
McNamara J., 1991, CONGR NUMER CONF J N, V81, P89
[8]  
Radziszowski S. P., 2011, ELECTRON J COMB