Resistive Switching in Nanogap Systems on SiO2 Substrates

被引:68
作者
Yao, Jun [5 ,6 ]
Zhong, Lin [1 ,2 ]
Zhang, Zengxing [3 ]
He, Tao [3 ]
Jin, Zhong [3 ]
Wheeler, Patrick J. [4 ]
Natelson, Douglas [1 ,4 ]
Tour, James M. [2 ,3 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Dept Comp Sci, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[5] Rice Univ, Appl Phys Program, Rice Quantum Inst, Houston, TX 77005 USA
[6] Rice Univ, Dept Bioengn, Houston, TX 77005 USA
基金
美国国家科学基金会;
关键词
carbon nanotubes; nanogaps; nonvolatile memory; resistive switching; SiO2; ELECTRICAL BREAKDOWN; CARBON NANOTUBES; THIN-FILM; CONDUCTION; SIO2-FILMS; MEMORIES; BEHAVIOR; PHASE;
D O I
10.1002/smll.200901100
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Voltage-con trolled resistive switching in various gap systems on SiO2 substrates is reported. The nanoscale-sized gaps are made by several means using different materials including metals, semiconductors, and amorphous carbon. The switching site is further reduced in size by using multiwalled carbon nanotubes and single-walled carbon nanotubes. The switching in all the gap systems shares the same characteristics. This independence of switching on the material compositions of the electrodes, accompanied by observable damage to the SiO2 substrate at the gap region, bespeaks the intrinsic switching from post-breakdown SiO2. It calls for caution when studying resistive switching in nanosystems on oxide substrates, since oxide breakdown extrinsic to the nanosystem can mimic resistive switching. Meanwhile, the high ON/OFF ratio (approximate to 10(5)) fast switching time (2 mu s, tested limit), and durable cycles show promising memory properties. The observed intermediate states reveal the filamentary nature of the switching.
引用
收藏
页码:2910 / 2915
页数:6
相关论文
共 30 条
[1]   Snapback behavior of the postbreakdown I-V characteristics in ultrathin SiO2 films [J].
Chen, TP ;
Tse, MS ;
Zeng, X .
APPLIED PHYSICS LETTERS, 2001, 78 (04) :492-494
[2]   Engineering carbon nanotubes and nanotube circuits using electrical breakdown [J].
Collins, PC ;
Arnold, MS ;
Avouris, P .
SCIENCE, 2001, 292 (5517) :706-709
[3]   Current saturation and electrical breakdown in multiwalled carbon nanotubes [J].
Collins, PG ;
Hersam, M ;
Arnold, M ;
Martel, R ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3128-3131
[4]   A THEORY OF OXIDE-COATED CATHODE [J].
DEARNALE.G .
THIN SOLID FILMS, 1969, 3 (03) :161-&
[5]   ELECTRICAL PHENOMENA IN AMORPHOUS OXIDE FILMS [J].
DEARNALEY, G ;
STONEHAM, AM ;
MORGAN, DV .
REPORTS ON PROGRESS IN PHYSICS, 1970, 33 (11) :1129-+
[6]  
Dearnaley G., 1970, Journal of Non-Crystalline Solids, V4, P593, DOI 10.1016/0022-3093(70)90097-9
[7]   Carbon nanotube linear bearing nanoswitches [J].
Deshpande, V. V. ;
Chiu, H. -Y. ;
Postma, H. W. Ch. ;
Miko, C. ;
Forro, L. ;
Bockrath, M. .
NANO LETTERS, 2006, 6 (06) :1092-1095
[8]  
ENDO M, 1988, CHEMTECH, V18, P568
[9]   Electrical conductivity and dynamics of electroforming in Al-SiOx-Al thin film sandwich structures [J].
Gould, RD ;
Lopez, MG .
THIN SOLID FILMS, 2003, 433 (1-2) :315-320
[10]   POLARITY-DEPENDENT MEMORY SWITCHING AND BEHAVIOR OF AG DENDRITE IN AG-PHOTODOPED AMORPHOUS AS2S3 FILMS [J].
HIROSE, Y ;
HIROSE, H .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (06) :2767-2772