Old and new Morrey spaees with heat kernel bounds

被引:80
作者
Duong, Xuan Thinh [1 ]
Xiao, Jie
Yan, Lixin
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[3] Zhongshan Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
关键词
Morrey spaces; semigroup; holomorphic functional calculus; Littlewood-Paley functions; CAMPANATO SPACES; BMO; INTERPOLATION; OPERATORS;
D O I
10.1007/s00041-006-6057-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given p is an element of [1, infinity) and lambda is an element of (0, n), we study Morrey space L-p,L-lambda(R-n) of all locally integrable complex-valued functions f on R-n such that for every open Euclidean ball B subset of R-n with radius r(B) there are numbers C = C(f) (depending on f) and c = c(f, B) (relying upon f and B) satisfying r(B)(-lambda) integral(B)\f(x) - c\(p) dx <= C and derive old and new, two essentially different cases arising from either choosing c = f(B) = \B\(-1) integral(B) f(y) dy or replacing c by Pt-B (x) = integral(tB) pt(B) (x, y)f(y) dy-where t(B) is scaled to r(B) and p(t)(.,.) is the kernel of the infinitesimal generator L of an analytic semigroup (e(-tL))(t >= 0) on L-2 (R-n). Consequently, we are led to simultaneously characterize the old and new Morrey spaces, but also to show that for a suitable operator L, the new Morrey space is equivalent to the old one.
引用
收藏
页码:87 / 111
页数:25
相关论文
共 28 条
[1]  
Adams DR, 2004, INDIANA U MATH J, V53, P1629
[2]  
ALBRECHT D, 1996, ANU, V34, P77
[3]  
[Anonymous], 1986, Proc. Centre Math. Anal. Austral. Nat. Univ.
[4]  
Auscher, 2005, BOUNDEDNESS BANACH S
[5]  
Campanato S., 1964, ANN SC NORM SUP PISA, V18, P137
[6]   A characterization of the Morrey-Campanato spaces [J].
Deng, DG ;
Duong, XT ;
Yan, LX .
MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) :641-655
[7]  
Duong XT, 1999, REV MAT IBEROAM, V15, P233
[8]   New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications [J].
Duong, XT ;
Yan, LX .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1375-1420
[9]   Duality of Hardy and BMO spaces associated with operators with heat kernel bounds [J].
Duong, XT ;
Yan, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (04) :943-973
[10]  
DUONG XT, 2005, NEW MORREY COMPANATO