Extreme tail risk estimation with the generalized Pareto distribution under the peaks-over-threshold framework

被引:3
作者
Zhao, Xu [1 ]
Cheng, Weihu [1 ]
Zhang, Pengyue [2 ]
机构
[1] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
[2] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
基金
中国国家自然科学基金;
关键词
Threshold; value at risk (VaR); expectiles; peaksover-threshold; extreme values; OF-FIT TESTS; QUANTILE ESTIMATION; STATISTICAL-INFERENCE; PARAMETER; SELECTION; MOMENTS;
D O I
10.1080/03610926.2018.1549253
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Modeling excesses over a high threshold and estimating extreme tail risk are two utmost studies in the extreme value literature. Traditional techniques are limited on handling these two challenges. To better analyze this type of data, we propose a novel approach which utilizes the generalized Pareto distribution (GPD) in the peaks-over-threshold (POT) framework. Under the proposed approach, by using partial L-moments (PL-moments), computational efficient estimators are derived for the parameters in the GPD. Additionally, we propose method to estimate the tail expectiles and apply a recently developed stopping rule to find the optimal threshold. Various simulation researches show that the proposed approach outperforms the traditional techniques in some aspects. Last, we apply the proposed method to the Shanghai Stock Exchange data for comprehensively illustrating the details and providing guidance for future applications.
引用
收藏
页码:827 / 844
页数:18
相关论文
共 30 条
  • [1] AUTOMATED THRESHOLD SELECTION FOR EXTREME VALUE ANALYSIS VIA ORDERED GOODNESS-OF-FIT TESTS WITH ADJUSTMENT FOR FALSE DISCOVERY RATE
    Bader, Brian
    Yan, Jun
    Zhang, Xuebin
    [J]. ANNALS OF APPLIED STATISTICS, 2018, 12 (01) : 310 - 329
  • [2] RESIDUAL LIFE TIME AT GREAT AGE
    BALKEMA, AA
    DEHAAN, L
    [J]. ANNALS OF PROBABILITY, 1974, 2 (05) : 792 - 804
  • [3] Beirlant J., 2006, Statistics of Extremes: Theory and Applications
  • [4] Risk management with expectiles
    Bellini, Fabio
    Di Bernardino, Elena
    [J]. EUROPEAN JOURNAL OF FINANCE, 2017, 23 (06) : 487 - 506
  • [5] Goodness-of-fit tests for the generalized Pareto distribution
    Choulakian, V
    Stephens, MA
    [J]. TECHNOMETRICS, 2001, 43 (04) : 478 - 484
  • [6] Estimation of tail risk based on extreme expectiles
    Daouia, Abdelaati
    Girard, Stephane
    Stupfler, Gilles
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (02) : 263 - 292
  • [7] de Haan L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
  • [8] Likelihood inference for generalized Pareto distribution
    del Castillo, Joan
    Serra, Isabel
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 83 : 116 - 128
  • [9] Embrechts P., 2013, MODELLING EXTREMAL E
  • [10] Embrechts P., 1997, MODELLING EXTREMAL E, DOI [10.1007/978-3-642-33483-2, DOI 10.1007/978-3-642-33483-2]