METAINTER: meta-analysis of multiple regression models in genome-wide association studies

被引:4
作者
Vaitsiakhovich, Tatsiana [1 ,2 ]
Drichel, Dmitriy [2 ]
Herold, Christine [2 ]
Lacour, Andre [2 ]
Becker, Tim [1 ,2 ]
机构
[1] Univ Bonn, Inst Med Biometry Informat & Epidemiol, D-53105 Bonn, Germany
[2] German Ctr Neurodegenerat Dis DZNE, D-53105 Bonn, Germany
关键词
INFORMATION; INTERSNP; VARIANT; LOCI;
D O I
10.1093/bioinformatics/btu629
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Meta-analysis of summary statistics is an essential approach to guarantee the success of genome-wide association studies (GWAS). Application of the fixed or random effects model to single-marker association tests is a standard practice. More complex methods of meta-analysis involving multiple parameters have not been used frequently, a gap that could be explained by the lack of a respective meta-analysis pipeline. Meta-analysis based on combining p-values can be applied to any association test. However, to be powerful, meta-analysis methods for high-dimensional models should incorporate additional information such as study-specific properties of parameter estimates, their effect directions, standard errors and covariance structure. Results: We modified 'method for the synthesis of linear regression slopes' recently proposed in the educational sciences to the case of multiple logistic regression, and implemented it in a meta-analysis tool called METAINTER. The software handles models with an arbitrary number of parameters, and can directly be applied toanalyze the results of single-SNP tests, global haplotype tests, tests for and under gene-gene or gene-environment interaction. Via simulations for two-single nucleotide polymorphisms (SNP) models we have shown that the proposed meta-analysis method has correct type I error rate. Moreover, power estimates come close to that of the joint analysis of the entire sample. We conducted a real data analysis of six GWAS of type 2 diabetes, available from dbGaP (http://www.ncbi.nlm.nih.gov/gap). For each study, a genome-wide interaction analysis of all SNP pairs was performed by logistic regression tests. The results were then meta-analyzed with METAINTER.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 31 条
[1]   Genetics of type 2 diabetes [J].
Ali, Omar .
WORLD JOURNAL OF DIABETES, 2013, 4 (04) :114-123
[2]  
[Anonymous], 1932, STAT METHODS RES WOR
[3]   The synthesis of regression slopes in meta-analysis [J].
Becker, Betsy Jane ;
Wu, Meng-Jia .
STATISTICAL SCIENCE, 2007, 22 (03) :414-429
[4]  
Becker BJ, 1994, The handbook of research synthesis, P215, DOI DOI 10.7758/9781610441377.19
[5]   Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls [J].
Burton, Paul R. ;
Clayton, David G. ;
Cardon, Lon R. ;
Craddock, Nick ;
Deloukas, Panos ;
Duncanson, Audrey ;
Kwiatkowski, Dominic P. ;
McCarthy, Mark I. ;
Ouwehand, Willem H. ;
Samani, Nilesh J. ;
Todd, John A. ;
Donnelly, Peter ;
Barrett, Jeffrey C. ;
Davison, Dan ;
Easton, Doug ;
Evans, David ;
Leung, Hin-Tak ;
Marchini, Jonathan L. ;
Morris, Andrew P. ;
Spencer, Chris C. A. ;
Tobin, Martin D. ;
Attwood, Antony P. ;
Boorman, James P. ;
Cant, Barbara ;
Everson, Ursula ;
Hussey, Judith M. ;
Jolley, Jennifer D. ;
Knight, Alexandra S. ;
Koch, Kerstin ;
Meech, Elizabeth ;
Nutland, Sarah ;
Prowse, Christopher V. ;
Stevens, Helen E. ;
Taylor, Niall C. ;
Walters, Graham R. ;
Walker, Neil M. ;
Watkins, Nicholas A. ;
Winzer, Thilo ;
Jones, Richard W. ;
McArdle, Wendy L. ;
Ring, Susan M. ;
Strachan, David P. ;
Pembrey, Marcus ;
Breen, Gerome ;
St Clair, David ;
Caesar, Sian ;
Gordon-Smith, Katherine ;
Jones, Lisa ;
Fraser, Christine ;
Green, Elain K. .
NATURE, 2007, 447 (7145) :661-678
[6]   Detecting association using epistatic information [J].
Chapman, Juliet ;
Clayton, David .
GENETIC EPIDEMIOLOGY, 2007, 31 (08) :894-909
[7]   Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians [J].
Cho, Yoon Shin ;
Chen, Chien-Hsiun ;
Hu, Cheng ;
Long, Jirong ;
Ong, Rick Twee Hee ;
Sim, Xueling ;
Takeuchi, Fumihiko ;
Wu, Ying ;
Go, Min Jin ;
Yamauchi, Toshimasa ;
Chang, Yi-Cheng ;
Kwak, Soo Heon ;
Ma, Ronald C. W. ;
Yamamoto, Ken ;
Adair, Linda S. ;
Aung, Tin ;
Cai, Qiuyin ;
Chang, Li-Ching ;
Chen, Yuan-Tsong ;
Gao, Yutang ;
Hu, Frank B. ;
Kim, Hyung-Lae ;
Kim, Sangsoo ;
Kim, Young Jin ;
Lee, Jeannette Jen-Mai ;
Lee, Nanette R. ;
Li, Yun ;
Liu, Jian Jun ;
Lu, Wei ;
Nakamura, Jiro ;
Nakashima, Eitaro ;
Ng, Daniel Peng-Keat ;
Tay, Wan Ting ;
Tsai, Fuu-Jen ;
Wong, Tien Yin ;
Yokota, Mitsuhiro ;
Zheng, Wei ;
Zhang, Rong ;
Wang, Congrong ;
So, Wing Yee ;
Ohnaka, Keizo ;
Ikegami, Hiroshi ;
Hara, Kazuo ;
Cho, Young Min ;
Cho, Nam H. ;
Chang, Tien-Jyun ;
Bao, Yuqian ;
Hedman, Asa K. ;
Morris, Andrew P. ;
McCarthy, Mark I. .
NATURE GENETICS, 2012, 44 (01) :67-U97
[8]  
Cochran W. G., 1937, J. Roy. Statist. Soc. 1937., (Suppl.), V4, P102
[9]   A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data:: Application to HLA in type 1 diabetes [J].
Cordell, HJ ;
Clayton, DG .
AMERICAN JOURNAL OF HUMAN GENETICS, 2002, 70 (01) :124-141
[10]  
de Bakker P.I., 2010, COLD SPRING HARB PRO, V6