Resolution-Controlled Conductivity Discretization in Electrical Impedance Tomography

被引:21
作者
Winkler, Robert [1 ]
Rieder, Andreas [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl & Numer Math, D-76049 Karlsruhe, Germany
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2014年 / 7卷 / 04期
关键词
electrical impedance tomography; adaptive reconstruction meshes; optimal resolution; COMPUTED-TOMOGRAPHY; UNIQUENESS;
D O I
10.1137/140958955
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work contributes to the numerical solution of the inverse problem of determining an isotropic conductivity from boundary measurements, known as electrical impedance tomography. To this end, we first investigate the imaging resolution of the complete electrode model in a circular geometry using analytic solutions of the forward problem and conformal maps. Based on this information we propose a novel discretization of the conductivity space which explicitly depends on the electrode sizes and locations. Roughly speaking, the resulting conductivity meshes comply with the maximal resolution provided by discrete data with a known noise level. We heuristically extend this approach to domains of arbitrary shape and present its performance under a Newton-type inversion algorithm.
引用
收藏
页码:2048 / 2077
页数:30
相关论文
共 29 条
  • [1] Alessandrini G., 1988, Appl. Anal., V27, P153, DOI [10.1080/00036818808839730, DOI 10.1080/00036818808839730]
  • [2] Calderon's inverse conductivity problem in the plane
    Astala, Kari
    Paivarinta, Lassi
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (01) : 265 - 299
  • [3] Borcea L., 2012, INVERSE PROBLEMS APP, V60, P55
  • [4] Electrical impedance tomography with resistor networks
    Borcea, Liliana
    Druskin, Vladimir
    Vasquez, Fernando Guevara
    [J]. INVERSE PROBLEMS, 2008, 24 (03)
  • [5] Numerical implementation of two noniterative methods for locating inclusions by impedance tomography
    Brühl, M
    Hanke, M
    [J]. INVERSE PROBLEMS, 2000, 16 (04) : 1029 - 1042
  • [6] Calderon A., 1980, SEM NUM AN ITS APPL, P65, DOI DOI 10.1590/S0101-82052006000200002
  • [7] Cheney M, 1990, Int J Imaging Syst Technol, V2, P66, DOI 10.1002/ima.1850020203
  • [8] Curtis EB, 2000, SER APPL M, V13, P1
  • [9] Simultaneous Reconstruction of Outer Boundary Shape and Admittivity Distribution in Electrical Impedance Tomography
    Darde, J.
    Hyvonen, N.
    Seppanen, A.
    Staboulis, S.
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2013, 6 (01): : 176 - 198
  • [10] FINE-TUNING ELECTRODE INFORMATION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Darde, Jeremi
    Hakula, Harri
    Hyvonen, Nuutti
    Staboulis, Stratos
    [J]. INVERSE PROBLEMS AND IMAGING, 2012, 6 (03) : 399 - 421