A FORMAL PROOF OF THE KEPLER CONJECTURE

被引:241
作者
Hales, Thomas [1 ]
Adams, Mark [2 ,3 ]
Bauer, Gertrud [4 ]
Tat Dat Dang [5 ]
Harrison, John [6 ]
Le Truong Hoang [7 ]
Kaliszyk, Cezary [8 ]
Magron, Victor [9 ]
Mclaughlin, Sean [10 ]
Tat Thang Nguyen [7 ]
Quang Truong Nguyen [1 ]
Nipkow, Tobias [11 ]
Obua, Steven [12 ]
Pleso, Joseph [13 ]
Rute, Jason [14 ]
Solovyev, Alexey [15 ]
Thi Hoai An Ta [7 ]
Nam Trung Tran [7 ]
Thi Diep Trieu [16 ]
Urban, Josef [17 ]
Vu, Ky [18 ]
Zumkeller, Roland [18 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA 15260 USA
[2] Proof Technol Ltd, Worcester, England
[3] Radboud Univ Nijmegen, Nijmegen, Netherlands
[4] ESG Elekt Syst & Logist GmbH, Berlin, Germany
[5] CanberraWeb, 5-47-49 Vicars St, Mitchell, ACT 2911, Australia
[6] Intel Corp, Santa Clara, CA 95051 USA
[7] Vietnam Acad Sci & Technol, Inst Math, Hanoi, Vietnam
[8] Univ Innsbruck, Innsbruck, Austria
[9] CNRS VERIMAG, Grenoble, France
[10] Amazon, Seattle, WA USA
[11] Tech Univ Munich, Munich, Germany
[12] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[13] Philips Elect North Amer Corp, Andover, MA USA
[14] Penn State Univ, University Pk, PA 16802 USA
[15] Univ Utah, Salt Lake City, UT 84112 USA
[16] AXA China Reg Insurance Co Ltd, Hong Kong, Hong Kong, Peoples R China
[17] CIIRC, Prague, Czech Republic
[18] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
HOL;
D O I
10.1017/fmp.2017.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article describes a formal proof of the Kepler conjecture on dense sphere packings in a combination of the HOL Light and Isabelle proof assistants. This paper constitutes the official published account of the now completed Flyspeck project.
引用
收藏
页数:29
相关论文
共 48 条
[1]  
Adams Mark, 2014, Mathematical Software - ICMS 2014. 4th International Congress. Proceedings. LNCS: 8592, P16, DOI 10.1007/978-3-662-44199-2_3
[2]  
Adams M., 2012, P IJCAR WORKSH AUT T
[3]  
Adams M, 2010, LECT NOTES COMPUT SC, V6327, P142, DOI 10.1007/978-3-642-15582-6_25
[4]  
[Anonymous], 2014, ITP
[5]  
[Anonymous], 2006, MATH ALGORITHMS PROO
[6]  
[Anonymous], 2012, London Math Soc. Lecture Note Series
[7]  
[Anonymous], 1979, LECT NOTES COMPUTER
[8]  
[Anonymous], 2014, THE FLYSPECK PROJECT
[9]  
[Anonymous], The USENIX Magazine, V36 36, P42, DOI DOI 10.5281/ZENODO.16303
[10]  
Bauer G., 2006, THESIS