The scaffold microenvironment for stem cell based bone tissue engineering

被引:131
作者
Hao, Zhichao [1 ]
Song, Zhenhua [2 ]
Huang, Jun [2 ]
Huang, Keqing [2 ]
Panetta, Amanda [3 ]
Gu, Zhipeng [2 ]
Wu, Jun [2 ,4 ]
机构
[1] Sun Yat Sen Univ, Guangdong Prov Key Lab Stomatol, Hosp Stomatol, Guanghua Sch Stomatol, Guangzhou 510055, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Engn, Key Lab Sensing Technol & Biomed Instrument Guang, Guangzhou 510006, Guangdong, Peoples R China
[3] Univ Windsor, Windsor, ON, Canada
[4] Sun Yat Sen Univ, Minist Educ, Key Lab Polymer Composite & Funct Mat, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
IN-VITRO; REGENERATIVE MEDICINE; DESIGNING MATERIALS; MATRIX INTERACTIONS; NICHE; PEPTIDE; MARROW; BIOMATERIALS; HYDROGELS; FATE;
D O I
10.1039/c7bm00146k
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Bone tissue engineering uses the principles and methods of engineering and life sciences to study bone structure, function and growth mechanism for the purposes of repairing, maintaining and improving damaged bone tissue. Scaffolds not only provide structural support for stem cells in cell adhesion and proliferation and bone formation, but also serve as a microenvironment for guiding stem cell differentiation and tissue regeneration and for controlling tissue structure. This review presents the research status of the scaffold microenvironment for bone-related stem cells based on bone tissue engineering. Scaffold materials and the stem cell microenvironment are described in this review, and the existing shortcomings are also simply mentioned.
引用
收藏
页码:1382 / 1392
页数:11
相关论文
共 92 条
[81]   Extracellular matrix structure [J].
Theocharis, Achilleas D. ;
Skandalis, Spyros S. ;
Gialeli, Chrysostomi ;
Karamanos, Nikos K. .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 97 :4-27
[82]   Bioactivation of an anorganic bone matrix by P-15 peptide for the promotion of early bone formation [J].
Thorwarth, M ;
Schultze-Mosgau, S ;
Wehrhan, F ;
Kessler, P ;
Srour, S ;
Wiltfang, J ;
Schlegel, KA .
BIOMATERIALS, 2005, 26 (28) :5648-5657
[83]  
Torisawa YS, 2014, NAT METHODS, V11, P663, DOI [10.1038/NMETH.2938, 10.1038/nmeth.2938]
[84]   Bioceramics: From Bone Regeneration to Cancer Nanomedicine [J].
Vallet-Regi, Maria ;
Ruiz-Hernandez, Eduardo .
ADVANCED MATERIALS, 2011, 23 (44) :5177-5218
[85]   Investigation of the three-dimensional orientation of mineralized collagen fibrils in human lamellar bone using synchrotron X-ray phase nano-tomography [J].
Varga, Peter ;
Pacureanu, Alexandra ;
Langer, Max ;
Suhonen, Heikki ;
Hesse, Bernhard ;
Grimal, Quentin ;
Cloetens, Peter ;
Raum, Kay ;
Peyrin, Francoise .
ACTA BIOMATERIALIA, 2013, 9 (09) :8118-8127
[86]   Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering [J].
Vo, T. N. ;
Shah, S. R. ;
Lu, S. ;
Tatara, A. M. ;
Lee, E. J. ;
Roh, T. T. ;
Tabata, Y. ;
Mikos, A. G. .
BIOMATERIALS, 2016, 83 :1-11
[87]   Evolving insights in cell-matrix interactions: Elucidating how non-soluble properties of the extracellular niche direct stem cell fate [J].
Walters, Nick J. ;
Gentleman, Eileen .
ACTA BIOMATERIALIA, 2015, 11 :3-16
[88]   STEM-CELLS [J].
WEISSMAN, I ;
SPANGRUDE, G ;
HEIMFELD, S ;
SMITH, L ;
UCHIDA, N .
NATURE, 1991, 353 (6339) :26-26
[89]   Block copolymer of poly(ester amide) and polyesters: Synthesis, characterization, and in vitro cellular response [J].
Wu, Jun ;
Chu, Chih-Chang .
ACTA BIOMATERIALIA, 2012, 8 (12) :4314-4323
[90]   Biomaterials for Bone Regenerative Engineering [J].
Yu, Xiaohua ;
Tang, Xiaoyan ;
Gohil, Shalini V. ;
Laurencin, Cato T. .
ADVANCED HEALTHCARE MATERIALS, 2015, 4 (09) :1268-1285