Local ADHM construction and holomorphic local vector bundles on the twistor space

被引:0
作者
Guha, P [1 ]
机构
[1] Max Planck Inst Math, D-53225 Bonn, Germany
关键词
ADHM theory; Penrose transform; homomorphic vector bundles; twistors; Ward transformation; Yang-Mills equations;
D O I
10.1016/S0393-0440(96)00049-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Local ADHM theory has been discussed; after making some general remarks about Penrose transform and methods of monad, we construct holomorphic vector bundles on the neighbourhood of a projective line in the twister space. By inverse Ward transformation this corresponds to local solution space of self-dual Yang-Mills equation. In the final section we discuss some possible applications of this theorem.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 33 条
  • [1] [Anonymous], 1978, PRINCIPLES ALGEBRAIC
  • [2] [Anonymous], 1982, MONOPOLES QUANTUM FI
  • [3] Atiyah M.F., 1979, GEOMETRY YANG MILLS
  • [4] CONSTRUCTION OF INSTANTONS
    ATIYAH, MF
    HITCHIN, NJ
    DRINFELD, VG
    MANIN, YI
    [J]. PHYSICS LETTERS A, 1978, 65 (03) : 185 - 187
  • [5] SELF-DUALITY AND GENERALIZED KDV FLOWS
    BAKAS, I
    DEPIREUX, DA
    [J]. MODERN PHYSICS LETTERS A, 1991, 6 (05) : 399 - 408
  • [6] Baston RJ, 1989, PENROSE TRANSFORM IT
  • [7] Beilinson A.A., 1978, Funktsional. Anal. i Prilozhen., V12, P68, DOI [10.1007/BF01681436, DOI 10.1007/BF01681436]
  • [8] YANG-MILLS EQUATIONS AS INVERSE SCATTERING PROBLEM
    BELAVIN, AA
    ZAKHAROV, VE
    [J]. PHYSICS LETTERS B, 1978, 73 (01) : 53 - 57
  • [9] PSEUDOPARTICLE SOLUTIONS OF YANG-MILLS EQUATIONS
    BELAVIN, AA
    POLYAKOV, AM
    SCHWARTZ, AS
    TYUPKIN, YS
    [J]. PHYSICS LETTERS B, 1975, 59 (01) : 85 - 87
  • [10] BOTT R, 1982, GTM, V82