Global mean first-passage times of random walks on complex networks

被引:157
作者
Tejedor, V. [1 ,2 ]
Benichou, O. [1 ]
Voituriez, R. [1 ]
机构
[1] Univ Paris 06, Lab Phys Theor Mat Condensee, UMR 7600, F-75255 Paris, France
[2] Tech Univ Munich, Dept Phys, D-85747 Garching, Germany
来源
PHYSICAL REVIEW E | 2009年 / 80卷 / 06期
关键词
complex networks; random processes;
D O I
10.1103/PhysRevE.80.065104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a general framework, applicable to a broad class of random walks on complex networks, which provides a rigorous lower bound for the mean first-passage time of a random walker to a target site averaged over its starting position, the so-called global mean first-passage time (GMFPT). This bound is simply expressed in terms of the equilibrium distribution at the target and implies a minimal scaling of the GMFPT with the network size. We show that this minimal scaling, which can be arbitrarily slow, is realized under the simple condition that the random walk is transient at the target site and independently of the small-world, scale-free, or fractal properties of the network. Last, we put forward that the GMFPT to a specific target is not a representative property of the network since the target averaged GMFPT satisfies much more restrictive bounds.
引用
收藏
页数:4
相关论文
共 39 条
[1]   Random walks on deterministic scale-free networks: Exact results [J].
Agliari, E. ;
Burioni, R. .
PHYSICAL REVIEW E, 2009, 80 (03)
[2]   Exact mean first-passage time on the T-graph [J].
Agliari, E. .
PHYSICAL REVIEW E, 2008, 77 (01)
[3]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[4]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[5]  
[Anonymous], 1999, REVERSIBLE MARKOV CH
[6]   Random walks on complex trees [J].
Baronchelli, Andrea ;
Catanzaro, Michele ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW E, 2008, 78 (01)
[7]  
Barrat A., 2008, Dynamical processes on complex networks
[8]   Averaged residence times of stochastic motions in bounded domains [J].
Bénichou, O ;
Coppey, M ;
Moreau, M ;
Suet, PH ;
Voituriez, R .
EUROPHYSICS LETTERS, 2005, 70 (01) :42-48
[9]   Zero constant formula for first-passage observables in bounded domains [J].
Benichou, O. ;
Meyer, B. ;
Tejedor, V. ;
Voituriez, R. .
PHYSICAL REVIEW LETTERS, 2008, 101 (13)
[10]   What is special about diffusion on scale-free nets? [J].
Bollt, EM ;
ben-Avraham, D .
NEW JOURNAL OF PHYSICS, 2005, 7