Hyper-Parameter Optimization Using MARS Surrogate for Machine-Learning Algorithms

被引:20
作者
Li, Yangyang [1 ]
Liu, Guangyuan [1 ]
Lu, Gao [1 ]
Jiao, Licheng [1 ]
Marturi, Naresh [2 ]
Shang, Ronghua [1 ]
机构
[1] Xidian Univ, Int Res Ctr Intelligent Percept & Computat, Sch Artificial Intelligence,Joint Int Res Lab Int, Minist Educ,Key Lab Intelligent Percept & Image U, Xian 710071, Peoples R China
[2] Univ Birmingham, Extreme Robot Lab, Edgbaston B15 2TT, England
来源
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE | 2020年 / 4卷 / 03期
基金
中国国家自然科学基金;
关键词
Hyper-parameter optimization; MARS; dynamic coordinate search; machine learning; GLOBAL OPTIMIZATION; EVOLUTIONARY; REGRESSION; SEARCH;
D O I
10.1109/TETCI.2019.2918509
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatically searching for optimal hyper parameters is of crucial importance for applying machine learning algorithms in practice. However, there are concerns regarding the tradeoff between efficiency and effectiveness of current approaches when faced with the expensive function evaluations. In this paper, a novel efficient hyper-parameter optimization algorithm is proposed (called MARSAOP), in which multivariate spline functions are used as surrogate and dynamic coordinate search approach is employed to generate the candidate points. Empirical studies on benchmark problems and machine-learning models (e.g.,SVM, RE, and NN) demonstrate that the proposed algorithm is able to find relatively high-quality solutions for benchmark problems and excellent hyper-parameter configurations for machine-learning models using a limited computational budget (few function evaluations).
引用
收藏
页码:287 / 297
页数:11
相关论文
共 39 条
[1]  
[Anonymous], 2016, GPyOpt: A Bayesian optimization framework in Python
[2]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[3]  
Brochu Eric., 2009, TUTORIAL BAYESIAN OP
[4]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393
[5]  
Eriksson D., 2015, Surrogate Optimization Toolbox (pySOT). github.com/dme65/pySOT
[6]   Recent advances in surrogate-based optimization [J].
Forrester, Alexander I. J. ;
Keane, Andy J. .
PROGRESS IN AEROSPACE SCIENCES, 2009, 45 (1-3) :50-79
[7]  
Friedman J H, 1995, Stat Methods Med Res, V4, P197, DOI 10.1177/096228029500400303
[8]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[9]   A novel LS-SVMs hyper-parameter selection based on particle swarm optimization [J].
Guo, X. C. ;
Yang, J. H. ;
Wu, C. G. ;
Wang, C. Y. ;
Liang, Y. C. .
NEUROCOMPUTING, 2008, 71 (16-18) :3211-3215
[10]  
He Zhi-kun, 2013, Control and Decision, V28, P1121