Noisy quantum Parrondo games

被引:12
作者
Meyer, DA [1 ]
机构
[1] Univ Calif San Diego, Program Geometry & Phys, Dept Math, La Jolla, CA 92093 USA
来源
FLUCTUATIONS AND NOISE IN PHOTONICS AND QUANTUM OPTICS | 2003年 / 5111卷
关键词
quantum ratchet; quantum lattice gas automata; quantum random walk; decoherence;
D O I
10.1117/12.497095
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Alternating two fair coin flipping games can create a winning game. Such a Parrondo game is a discrete model for a thermal ratchet. Recently we have constructed quantum versions of these coin flipping games that display the same "paradoxical" behavior. In this paper we add noise to these quantum Parrondo games in order that they can be compared with continuum models of quantum ratchets. Simulation of these models reproduces one of the most interesting features of quantum ratchets: current inversion.
引用
收藏
页码:344 / 350
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 2009, Quantum computation and quantum information, DOI DOI 10.1119/1.1463744
[2]  
BRUN T, 2003, PHYS REV A, V67, P30419
[3]   QUANTUM TUNNELLING IN A DISSIPATIVE SYSTEM [J].
CALDEIRA, AO ;
LEGGETT, AJ .
ANNALS OF PHYSICS, 1983, 149 (02) :374-456
[4]   THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM [J].
FEYNMAN, RP ;
VERNON, FL .
ANNALS OF PHYSICS, 1963, 24 (01) :118-173
[5]  
GOTTESMAN D, PHYS REV A, V64
[6]  
Harmer GP, 1999, STAT SCI, V14, P206
[7]   Game theory - Losing strategies can win by Parrondo's paradox [J].
Harmer, GP ;
Abbott, D .
NATURE, 1999, 402 (6764) :864-864
[8]  
KENDON V, DECOHERENCE DISCRETE
[9]   Quantum strategies [J].
Meyer, DA .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :1052-1055
[10]   Parrondo games as lattice gas automata [J].
Meyer, DA ;
Blumer, H .
JOURNAL OF STATISTICAL PHYSICS, 2002, 107 (1-2) :225-239