Benefits in the Macrophage Response Due to Graphene Oxide Reduction by Thermal Treatment

被引:22
作者
Cicuendez, Monica [1 ]
Casarrubios, Laura [1 ]
Barroca, Nathalie [2 ]
Silva, Daniela [2 ]
Feito, Maria Jose [1 ]
Diez-Orejas, Rosalia [3 ]
Marques, Paula A. A. P. [2 ]
Portoles, Maria Teresa [1 ,4 ]
机构
[1] Univ Complutense Madrid, Inst Invest Sanitaria Hosp Clin San Carlos IdISSC, Fac Ciencias Quim, Dept Bioquim & Biol Mol, Madrid 28040, Spain
[2] Univ Aveiro, Dept Mech Engn, Ctr Mech Technol & Automat TEMA, P-3810193 Aveiro, Portugal
[3] Univ Complutense Madrid, Fac Farm, Dept Microbiol & Parasitol, Madrid 28040, Spain
[4] CIBER Bioingn Biomat & Nanomed, Madrid 28040, Spain
关键词
graphene oxide; reduced graphene oxide; macrophage; cytokine; immune response; CELLULAR UPTAKE; GRAPHITE OXIDE; NANOMATERIALS; SCAFFOLDS; CELLS; NANOPARTICLES; ACCUMULATION; POLARIZATION; MECHANISMS; PLASTICITY;
D O I
10.3390/ijms22136701
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Graphene and its derivatives are very promising nanomaterials for biomedical applications and are proving to be very useful for the preparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materials (GBM) appears to be critical in promoting regeneration, thus, the study of this response is essential before they are used to prepare any type of scaffold. Another relevant factor is the variability of the GBM surface chemistry, namely the type and quantity of oxygen functional groups, which may have an important effect on cell behavior. The response of RAW-264.7 macrophages to graphene oxide (GO) and two types of reduced GO, rGO15 and rGO30, obtained after vacuum-assisted thermal treatment of 15 and 30 min, respectively, was evaluated by analyzing the uptake of these nanostructures, the intracellular content of reactive oxygen species, and specific markers of the proinflammatory M1 phenotype, such as CD80 expression and secretion of inflammatory cytokines TNF-alpha and IL-6. Our results demonstrate that GO reduction resulted in a decrease of both oxidative stress and proinflammatory cytokine secretion, significantly improving its biocompatibility and potential for the preparation of 3D scaffolds able of triggering the appropriate immune response for tissue regeneration.
引用
收藏
页数:16
相关论文
共 69 条
[11]   Graphene-based macroscopic assemblies and architectures: an emerging material system [J].
Cong, Huai-Ping ;
Chen, Jia-Fu ;
Yu, Shu-Hong .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (21) :7295-7325
[12]   Toxicity of engineered nanomaterials with different physicochemical properties and the role of protein corona on cellular uptake and intrinsic ROS production [J].
Deciga-Alcaraz, Alejandro ;
Medina-Reyes, Estefany, I ;
Delgado-Buenrostro, Norma L. ;
Rodriguez-Ibarra, Carolina ;
Ganem-Rondero, Adriana ;
Vazquez-Zapien, Gustavo J. ;
Mata-Miranda, Monica M. ;
Limon-Pacheco, Jorge H. ;
Garcia-Cuellar, Claudia M. ;
Sanchez-Perez, Yesennia ;
Chirino, Yolanda, I .
TOXICOLOGY, 2020, 442
[13]   The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials [J].
Dolbin, Alexandr V. ;
Khlistyuck, Maria V. ;
Esel'son, Valentin B. ;
Gavrilko, Viktor G. ;
Vinnikov, Nikolay A. ;
Basnukaeva, Razet M. ;
Maluenda, Irene ;
Maser, Wolfgang K. ;
Benito, Ana M. .
APPLIED SURFACE SCIENCE, 2016, 361 :213-220
[14]   3D Reduced Graphene Oxide Scaffolds with a Combinatorial Fibrous-Porous Architecture for Neural Tissue Engineering [J].
Girao, Andre F. ;
Sousa, Joana ;
Dominguez-Bajo, Ana ;
Gonzalez-Mayorga, Ankor ;
Bdikin, Igor ;
Pujades-Otero, Eulalia ;
Casan-Pastor, Nieves ;
Jesus Hortiguela, Maria ;
Otero-Irurueta, Gonzalo ;
Completo, Antonio ;
Concepcion Serrano, Maria ;
Marques, Paula A. A. P. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (35) :38962-38975
[15]   Electrostatic self-assembled graphene oxide-collagen scaffolds towards a three-dimensional microenvironment for biomimetic applications [J].
Girao, Andre F. ;
Goncalves, Gil ;
Bhangra, Kulraj S. ;
Phillips, James B. ;
Knowles, Jonathan ;
Irurueta, Gonzalo ;
Singh, Manoj K. ;
Bdkin, Igor ;
Completo, Antonio ;
Marques, Paula A. A. P. .
RSC ADVANCES, 2016, 6 (54) :49039-49051
[16]   The effect of adding reduced graphene oxide to electrospun polycaprolactone scaffolds on MG-63 cells activity [J].
Gohari, Parisa Haji Mohammadi ;
Nazarpak, Masoumeh Haghbin ;
Solati-Hashjin, Mehran .
MATERIALS TODAY COMMUNICATIONS, 2021, 27
[17]   Nano-Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy [J].
Goncalves, Gil ;
Vila, Mercedes ;
Portoles, Maria-Teresa ;
Vallet-Regi, Maria ;
Gracio, Jost ;
Marques, Paula Alexandrina A. P. .
ADVANCED HEALTHCARE MATERIALS, 2013, 2 (08) :1072-1090
[18]   The effect of particle design on cellular internalization pathways [J].
Gratton, Stephanie E. A. ;
Ropp, Patricia A. ;
Pohlhaus, Patrick D. ;
Luft, J. Christopher ;
Madden, Victoria J. ;
Napier, Mary E. ;
DeSimone, Joseph M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (33) :11613-11618
[19]   Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells [J].
Greulich, C. ;
Diendorf, J. ;
Simon, T. ;
Eggeler, G. ;
Epple, M. ;
Koeller, M. .
ACTA BIOMATERIALIA, 2011, 7 (01) :347-354
[20]   Assessment of the toxic potential of graphene family nanomaterials [J].
Guo, Xiaoqing ;
Mei, Nan .
JOURNAL OF FOOD AND DRUG ANALYSIS, 2014, 22 (01) :105-115