Surface properties of biomimetic nanocrystalline apatites; applications in biomaterials

被引:73
作者
Rey, Christian [1 ]
Combes, Christele [1 ]
Drouet, Christophe [1 ]
Cazalbou, Sophie [2 ]
Grossin, David [1 ]
Brouillet, Fabien [2 ]
Sarda, Stephanie [3 ]
机构
[1] Univ Toulouse, CIRIMAT, INPT, UPS,CNRS,ENSIACET,UMR 5085, F-31030 Toulouse 4, France
[2] Univ Toulouse, CIRIMAT, INPT, UPS,CNRS,Fac Sci Pharmaceut,UMR 5085, F-31062 Toulouse 04, France
[3] Univ Toulouse 3, CIRIMAT, Univ Touluse, INPT,UPS,CNRS,UMR 5085, F-31062 Toulouse 4, France
关键词
Apatite nanocrystals; Biomimetism; Hydrated surface layer; Ion exchange; Adsorption; Biomaterials; BONE; BISPHOSPHONATE; HYDROXYAPATITE; ENRICHMENT; EVOLUTION;
D O I
10.1016/j.pcrysgrow.2014.09.005
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
The term biomimetic is used with different meanings; applied to materials it is often intended to denote preparative techniques and/or properties mimicking those of biological materials. Biological nanocrystals are characterized by the existence of non-apatitic domains, which have sometimes been interpreted as a sign of formation of precursor phases. Finally, spectroscopic (FTIR and SS-NMR) analyses of wet samples revealed that the surface hydrated layers were structured, and that the structuralization was related to surface composition and easily altered by fast, reversible ionic exchange, leaving the apatite domains unchanged. The hydrated layer shall not be considered as a Stern double layer but a result of the precipitation process of biomimetic apatites. This layer is believed to decrease the water-crystal interfacial energy and to favor the formation of the nanocrystals in aqueous media. From a thermodynamic point of view, however, the apatite domains are the most stable and with time they develop at the expense of the hydrated layer, incorporating some of the mineral ions presenting this layer.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 30 条
[21]   Nanocrystalline apatites in biological systems: characterisation, structure and properties [J].
Rey, C. ;
Combes, C. ;
Drouet, C. ;
Lebugle, A. ;
Sfihi, H. ;
Barroug, A. .
MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2007, 38 (12) :996-1002
[22]   Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials [J].
Rey, C. ;
Combes, C. ;
Drouet, C. ;
Sfihi, H. ;
Barroug, A. .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2007, 27 (02) :198-205
[23]   Bone mineral: update on chemical composition and structure [J].
Rey, C. ;
Combes, C. ;
Drouet, C. ;
Glimcher, M. J. .
OSTEOPOROSIS INTERNATIONAL, 2009, 20 (06) :1013-1021
[24]  
Rey C., 2011, COMPREHENSIVE BIOMAT, P187, DOI [DOI 10.1016/B978-0-08-055294-1.00178-1, 10.1016/B978-0-08-055294-1.00178-1]
[25]   Solution synthesis of hydroxyapatite designer particulates [J].
Riman, RE ;
Suchanek, WL ;
Byrappa, K ;
Chen, CW ;
Shuk, P ;
Oakes, CS .
SOLID STATE IONICS, 2002, 151 (1-4) :393-402
[26]  
Sfihi H., 2002, Magnetic Resonance in Colloids and Interface Science. Proceedings of the NATO Advanced Research Workshop, P409
[27]   Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters [J].
Vandecandelaere, Nicolas ;
Rey, Christian ;
Drouet, Christophe .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2012, 23 (11) :2593-2606
[28]  
Wang Y, 2012, NAT MATER, V11, P724, DOI [10.1038/NMAT3362, 10.1038/nmat3362]
[29]   Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite [J].
Wilson, RM ;
Elliott, JC ;
Dowker, SEP ;
Rodriguez-Lorenzo, LM .
BIOMATERIALS, 2005, 26 (11) :1317-1327
[30]   Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite [J].
Wilson, Rory M. ;
Dowker, Stephanie E. P. ;
Elliott, James C. .
BIOMATERIALS, 2006, 27 (27) :4682-4692