The Acute Stress Response in the Multiomic Era

被引:30
作者
Floriou-Servou, Amalie [1 ,3 ,4 ]
von Ziegler, Lukas [1 ,3 ,4 ]
Waag, Rebecca [1 ,3 ,4 ]
Schlappi, Christa [2 ,3 ,4 ]
Germain, Pierre-Luc [2 ,3 ,4 ,5 ]
Bohacek, Johannes [1 ,3 ,4 ]
机构
[1] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Lab Mol & Behav Neurosci, Inst Neurosci, Zurich, Switzerland
[2] Swiss Fed Inst Technol, Dept Hlth Sci & Technol, Inst Neurosci, Computat Neurogen, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Neurosci Ctr Zurich, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] Univ Zurich, Dept Mol Life Sci, Lab Stat Bioinformat, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
BRAIN ENERGY-METABOLISM; IN-VIVO EVIDENCE; NEURONAL-ACTIVITY; GLUCOCORTICOID-RECEPTOR; LACTATE RELEASE; GLUCOSE; ASTROCYTES; BINDING; CORTICOSTERONE; NORADRENALINE;
D O I
10.1016/j.biopsych.2020.12.031
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping & mdash;particularly in response to severe or repeated stressors & mdash;can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.
引用
收藏
页码:1116 / 1126
页数:11
相关论文
共 151 条
[1]  
ADAM M, 2017, NAT PROTOC, V144, P3625
[2]  
AEBERSOLD R, 2003, MOL PSYCHIATR, V422, P198
[3]  
ANACKER C, 2013, J NEUROENDOCRINOL, V110, P8708
[4]  
ARRINGTON JV, 2017, WIRES DEV BIOL, V142, P4373
[5]   Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility [J].
Bagot, Rosemary C. ;
Cates, Hannah M. ;
Purushothaman, Immanuel ;
Lorsch, Zachary S. ;
Walker, Deena M. ;
Wang, Junshi ;
Huang, Xiaojie ;
Schluter, Oliver M. ;
Maze, Ian ;
Pena, Catherine J. ;
Heller, Elizabeth A. ;
Issler, Orna ;
Wang, Minghui ;
Song, Won-min ;
Stein, Jason. L. ;
Liu, Xiaochuan ;
Doyle, Marie A. ;
Scobie, Kimberly N. ;
Sun, Hao Sheng ;
Neve, Rachael L. ;
Geschwind, Daniel ;
Dong, Yan ;
Shen, Li ;
Zhang, Bin ;
Nestler, Eric J. .
NEURON, 2016, 90 (05) :969-983
[6]   Single-nucleus and single-cell transcriptomes compared in matched cortical cell types [J].
Bakken, Trygve E. ;
Hodge, Rebecca D. ;
Miller, Jeremy A. ;
Yao, Zizhen ;
Thuc Nghi Nguyen ;
Aevermann, Brian ;
Barkan, Eliza ;
Bertagnolli, Darren ;
Casper, Tamara ;
Dee, Nick ;
Garren, Emma ;
Goldy, Jeff ;
Graybuck, Lucas T. ;
Kroll, Matthew ;
Lasken, Roger S. ;
Lathia, Kanan ;
Parry, Sheana ;
Rimorin, Christine ;
Scheuermann, Richard H. ;
Schork, Nicholas J. ;
Shehata, Soraya I. ;
Tieu, Michael ;
Phillips, John W. ;
Bernard, Amy ;
Smith, Kimberly A. ;
Zeng, Hongkui ;
Lein, Ed S. ;
Tasic, Bosiljka .
PLOS ONE, 2018, 13 (12)
[7]   CROSSTALK CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain [J].
Barros, L. F. ;
Weber, B. .
JOURNAL OF PHYSIOLOGY-LONDON, 2018, 596 (03) :347-350
[8]  
BECKER PB, 1986, P NATL ACAD SCI USA, V324, P686
[9]   The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand [J].
Bekar, Lane K. ;
Wei, Helen S. ;
Nedergaard, Maiken .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2012, 32 (12) :2135-2145
[10]  
BING G, 1992, J NEUROSCI, V592, P57