A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics

被引:30
|
作者
Cao, Bing-Yang [1 ]
Li, Yuan-Wei [1 ]
机构
[1] Tsinghua Univ, Dept Engn Mech, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2010年 / 133卷 / 02期
基金
中国国家自然科学基金;
关键词
SIMULATIONS; FLUIDS; ARGON; FLOW;
D O I
10.1063/1.3463699
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A uniform source-and-sink (USS) scheme, which combines features of the reverse [F. Muller-Plathe, J. Chem. Phys. 106, 6082 (1997)] and improved relaxation [B. Y. Cao, J. Chem. Phys. 129, 074106 (2008)] methods, is developed to calculate the thermal conductivity by nonequilibrium molecular dynamics (NEMD). The uniform internal heat source and sink are realized by exchanging the velocity vectors of individual atoms in the right half and left half systems, and produce a periodically quadratic temperature profile throughout the system. The thermal conductivity can be easily extracted from the mean temperatures of the right and left half systems rather than by fitting the temperature profiles. In particular, this scheme greatly increases the relaxation of the exited localized phonon modes which often worsen the calculation accuracy and efficiency in most other NEMD methods. The calculation of the thermal conductivities of solid argon shows that the simple USS scheme gives accurate results with fast convergence. (C) 2010 American Institute of Physics. [doi:10.1063/1.3463699]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme
    Cao, Bing-Yang
    Dong, Ruo-Yu
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (16) : 5306 - 5316
  • [2] Application of the uniform source-and-sink scheme to molecular dynamics calculation of the self-diffusion coefficient of fluids
    Dong, Ruo-Yu
    Cao, Bing-Yang
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2012, 92 (03) : 229 - 237
  • [3] A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity
    MullerPlathe, F
    JOURNAL OF CHEMICAL PHYSICS, 1997, 106 (14): : 6082 - 6085
  • [4] Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids
    Nejatolahi, Mostafa
    Golneshan, Ali Akbar
    Kamali, Reza
    Sabbaghi, Samad
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (04) : 1467 - 1481
  • [5] Nonequilibrium versus equilibrium molecular dynamics for calculating the thermal conductivity of nanofluids
    Mostafa Nejatolahi
    Ali Akbar Golneshan
    Reza Kamali
    Samad Sabbaghi
    Journal of Thermal Analysis and Calorimetry, 2021, 144 : 1467 - 1481
  • [6] Generalization of the homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity to multibody potentials
    Mandadapu, Kranthi K.
    Jones, Reese E.
    Papadopoulos, Panayiotis
    PHYSICAL REVIEW E, 2009, 80 (04):
  • [7] Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme
    Cao, Bing-Yang
    JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (07):
  • [8] A homogeneous nonequilibrium molecular dynamics method for calculating thermal conductivity with a three-body potential
    Mandadapu, Kranthi K.
    Jones, Reese E.
    Papadopoulos, Panayiotis
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (20):
  • [9] Nonequilibrium molecular dynamics method for thermal conductivity simulation
    Key Laboratory for Thermal Science and Power Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
    Jisuan Wuli, 2007, 4 (463-466):
  • [10] Perturbed molecular dynamics for calculating thermal conductivity of zirconia
    Yoshiya, M
    Harada, A
    Takeuchi, M
    Matsunaga, K
    Matsubara, H
    MOLECULAR SIMULATION, 2004, 30 (13-15) : 953 - 961