Oncological drug discovery: AI meets structure-based computational research

被引:11
作者
Gonzalez, Marina Gorostiola [1 ,2 ]
Janssen, Antonius P. A. [2 ,3 ]
IJzerman, Adriaan P. [1 ]
Heitman, Laura H. [1 ,2 ]
van Westen, Gerard J. P. [1 ]
机构
[1] Leiden Univ, Leiden Acad Ctr Drug Res, Div Drug Discovery & Safety, Leiden, Netherlands
[2] Oncode Inst, Utrecht, Netherlands
[3] Leiden Univ, Leiden Inst Chem, Mol Physiol, Leiden, Netherlands
关键词
Cancer; Arti ficial intelligence; Machine learning; Structure-based drug design; Hallmarks of cancer; CANCER; HALLMARKS; NEUROLYSIN; PRECISION; REPAIR;
D O I
10.1016/j.drudis.2022.03.005
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The integration of machine learning and structure-based methods has proven valuable in the past as a way to prioritize targets and compounds in early drug discovery. In oncological research, these methods can be highly beneficial in addressing the diversity of neoplastic diseases portrayed by the different hallmarks of cancer. Here, we review six use case scenarios for integrated computational methods, namely driver prediction, computational mutagenesis, (off)-target prediction, binding site prediction, virtual screening, and allosteric modulation analysis. We address the heterogeneity of integration approaches and individual methods, while acknowledging their current limitations and highlighting their potential to bring drugs for personalized oncological therapies to the market faster.
引用
收藏
页码:1661 / 1670
页数:10
相关论文
共 74 条
  • [1] Machine learning classification can reduce false positives in structure-based virtual screening
    Adeshina, Yusuf O.
    Deeds, Eric J.
    Karanicolas, John
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (31) : 18477 - 18488
  • [2] Predicting Kinase Inhibitor Resistance: Physics-Based and Data-Driven Approaches
    Aldeghi, Matteo
    Gapsys, Vytautas
    de Groot, Bert L.
    [J]. ACS CENTRAL SCIENCE, 2019, 5 (08) : 1468 - 1474
  • [3] Large-Scale Computational Screening Identifies First in Class Multitarget Inhibitor of EGFR Kinase and BRD4
    Allen, Bryce K.
    Mehta, Saurabh
    Ember, Stewart W. J.
    Schonbrunn, Ernst
    Ayad, Nagi
    Schuerer, Stephan C.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [4] Integrated Computational Approaches and Tools for Allosteric Drug Discovery
    Amamuddy, Olivier Sheik
    Veldman, Wayde
    Manyumwa, Colleen
    Khairallah, Afrah
    Agajanian, Steve
    Oluyemi, Odeyemi
    Verkhivker, Gennady M.
    Bishop, Ozlem Tastan
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (03)
  • [5] Artificial intelligence for precision oncology: beyond patient stratification
    Azuaje, Francisco
    [J]. NPJ PRECISION ONCOLOGY, 2019, 3 (1)
  • [6] Function and evolution of B-Raf loop dynamics relevant to cancer recurrence under drug inhibition
    Babbitt, Gregory A.
    Lynch, Miranda L.
    McCoy, Matthew
    Fokoue, Ernest P.
    Hudson, Andre O.
    [J]. JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (01) : 468 - 483
  • [7] Bailey MH, 2018, CELL, V173, P371, DOI [10.1016/j.cell.2018.02.060, 10.1016/j.cell.2018.07.034]
  • [8] A Structure-Based Drug Discovery Paradigm
    Batool, Maria
    Ahmad, Bilal
    Choi, Sangdun
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (11)
  • [9] Discovery of Novel Tankyrase Inhibitors through Molecular Docking-Based Virtual Screening and Molecular Dynamics Simulation Studies
    Berishvili, Vladimir P.
    Kuimov, Alexander N.
    Voronkov, Andrew E.
    Radchenko, Eugene, V
    Kumar, Pradeep
    Choonara, Yahya E.
    Pillay, Viness
    Kamal, Ahmed
    Palyulin, Vladimir A.
    [J]. MOLECULES, 2020, 25 (14):
  • [10] Time-Domain Analysis of Molecular Dynamics Trajectories Using Deep Neural Networks: Application to Activity Ranking of Tankyrase Inhibitors
    Berishvili, Vladimir P.
    Perkin, Valentin O.
    Voronkov, Andrew E.
    Radchenko, Eugene V.
    Syed, Riyaz
    Reddy, Chittireddy Venkata Ramana
    Pillay, Viness
    Kumar, Pradeep
    Choonara, Yahya E.
    Kamal, Ahmed
    Palyulin, Vladimir A.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (08) : 3519 - 3532