In situ nitrogen-doped carbon nano-onions for ultrahigh-rate asymmetric supercapacitor

被引:47
作者
Mohapatra, Debananda [1 ]
Muhammad, Olvianas [1 ]
Sayed, Mostafa Saad [1 ,3 ]
Parida, Smrutiranjan [2 ]
Shim, Jae-Jin [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, Gyongsan 38541, Gyeongbuk, South Korea
[2] IIT Bombay Powai, Dept Met Engn & Mat Sci, Mumbai 400076, Maharashtra, India
[3] Egyptian Petr Res Inst, Anal & Evaluat Dept, Cairo 11727, Egypt
基金
新加坡国家研究基金会;
关键词
Exohedral; Graphitization; Ultrahigh-rate asymmetric supercapacitor; Negative electrode; Rapid response; REDUCED GRAPHENE OXIDE; PERFORMANCE; NANOTUBES; CAPACITANCE; ELECTRODES; NANOSHEETS;
D O I
10.1016/j.electacta.2019.135363
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The growing demand for clean energy storage and delivery during surge power applications motivate us to synthesize highly graphitic, mesoporous nitrogen-doped carbon nano-onions (N-CNOs) via a one-step in situ flame pyrolysis procedure for their potential asymmetric supercapacitor (ASC) electrodes. The operating voltage of the fabricated ASC device is extended to 1.8 V in a 1 M Na2SO4 electrolyte, yielding a maximum specific capacitance of 113 F g(-1) and a high energy density of 51 Wh kg(-1) at a current density of 4 A g(-1). Importantly, even at a high current density of 20 A g(-1), the device still delivers a high power density of 18 kW kg(-1) while maintaining an energy density of 6 Wh kg(-1). Furthermore, the novel ASC exhibits excellent electrochemical cyclic stability over 10,000 cycles, retaining 98% of its specific capacitance and excellent coulombic efficiency of 99% at a high current density of 20 A g(-1). The smaller characteristic relaxation time-constant (340 ms) than the previously reported graphene/MXene-based supercapacitors, validates the ultrahigh-rate ASC device-performance. These results confirm that N -CNOs can be used as a novel alternative electrode material in supercapacitors with high specific energy and power. (c) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:9
相关论文
共 51 条
[1]  
Boota M., 2018, ADV ENERGY MATER
[2]   Ternary composites of delaminated-MnO2/PDDA/functionalized-CNOs for high-capacity supercapacitor electrodes [J].
Borgohain, Rituraj ;
Selegue, John P. ;
Cheng, Y-T. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (47) :20367-20373
[3]   Electrochemical Study of Functionalized Carbon Nano-Onions for High-Performance Supercapacitor Electrodes [J].
Borgohain, Rituraj ;
Li, Juchuan ;
Selegue, John P. ;
Cheng, Y-T .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (28) :15068-15075
[4]   Electrochemical properties of composites containing small carbon nano-onions and solid polyelectrolytes [J].
Breczko, Joanna ;
Winkler, Krzysztof ;
Plonska-Brzezinska, Marta E. ;
Villalta-Cerdas, Adrian ;
Echegoyen, Luis .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (36) :7761-7768
[5]  
Britt P.F., 2002, ENERGY
[6]   Double layer supercapacitor properties of onion-like carbon materials [J].
Bushueva, E. G. ;
Galkin, P. S. ;
Okotrub, A. V. ;
Bulusheva, L. G. ;
Gavrilov, N. N. ;
Kuznetsov, V. L. ;
Moiseekov, S. I. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2008, 245 (10) :2296-2299
[7]   Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation [J].
Chen, George Z. .
PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (03) :245-255
[8]   Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors [J].
Chen, Li-Feng ;
Lu, Yan ;
Yu, Le ;
Lou, Xiong Wen .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1777-1783
[9]   Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes [J].
Gao, Yang ;
Zhou, Yun Shen ;
Qian, Min ;
He, Xiang Nan ;
Redepenning, Jody ;
Goodman, Paul ;
Li, Hao Ming ;
Jiang, Lan ;
Lu, Yong Feng .
CARBON, 2013, 51 :52-58
[10]   Nitrogen-doped carbon nets with micro/mesoporous structures as electrodes for high-performance supercapacitors [J].
Han, Li-Na ;
Wei, Xiao ;
Zhu, Qian-Cheng ;
Xu, Shu-Mao ;
Wang, Kai-Xue ;
Chen, Jie-Sheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (42) :16698-16705