Acoustic waves effect on the generation of nitrogen oxides by corona discharge in air

被引:2
作者
Balek, R. [1 ]
Pekarek, S. [1 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Tech 2, Prague 16627 6, Czech Republic
关键词
corona discharge; acoustic waves; nitrogen oxides; PLATE ELECTRICAL-DISCHARGE; HOLLOW-NEEDLE;
D O I
10.1088/1361-6595/aad10d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We studied the interaction of acoustic waves with negative corona discharge in air at atmospheric pressure. The application of acoustic waves on the discharge causes a mixing of ambient air with the gas between the electrodes, which results in cooling of the gas in the interelectrode gap. As a rough indirect indicator of the discharge cooling, we used a concentration of nitrogen oxides generated by the discharge. We chose these oxides because they exhibit antibacterial properties. We showed that for a particular discharge power with increasing amplitudes of acoustic displacements, the concentration of generated nitrogen mono/dioxide decreases, and that this decrease could be attributed mainly to the temperature. We also found that application of acoustic waves on the discharge for a particular power substantially decreases transient spark frequency, increases the magnitude of the streamer onset voltage, and increases the difference between the streamer and spark onset voltage.
引用
收藏
页数:8
相关论文
共 21 条
  • [1] The 2017 Plasma Roadmap: Low temperature plasma science and technology
    Adamovich, I.
    Baalrud, S. D.
    Bogaerts, A.
    Bruggeman, P. J.
    Cappelli, M.
    Colombo, V.
    Czarnetzki, U.
    Ebert, U.
    Eden, J. G.
    Favia, P.
    Graves, D. B.
    Hamaguchi, S.
    Hieftje, G.
    Hori, M.
    Kaganovich, I. D.
    Kortshagen, U.
    Kushner, M. J.
    Mason, N. J.
    Mazouffre, S.
    Thagard, S. Mededovic
    Metelmann, H-R
    Mizuno, A.
    Moreau, E.
    Murphy, A. B.
    Niemira, B. A.
    Oehrlein, G. S.
    Petrovic, Z. Lj
    Pitchford, L. C.
    Pu, Y-K
    Rauf, S.
    Sakai, O.
    Samukawa, S.
    Starikovskaia, S.
    Tennyson, J.
    Terashima, K.
    Turner, M. M.
    van de Sanden, M. C. M.
    Vardelle, A.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (32)
  • [2] The influence of electrode geometry and gas flow on corona-to-glow and glow-to-spark threshold currents in air
    Akishev, Y
    Goossens, O
    Callebaut, T
    Leys, C
    Napartovich, A
    Trushkin, N
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2001, 34 (18) : 2875 - 2882
  • [3] Acoustic field effects on a negative corona discharge
    Balek, R.
    Cervenka, M.
    Pekarek, S.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (03)
  • [4] Nanoscience with non-equilibrium plasmas at atmospheric pressure
    Belmonte, T.
    Arnoult, G.
    Henrion, G.
    Gries, T.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (36)
  • [5] Non-thermal atmospheric pressure discharges
    Fridman, A
    Chirokov, A
    Gutsol, A
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (02) : R1 - R24
  • [6] Fridman A., 2004, Plasma Physics and Engineering
  • [7] Hanson R.K., 1984, Combustion chemistry, P361, DOI DOI 10.1007/978-1-4684-0186-8_6
  • [8] Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration
    Heitz, Sylvain A.
    Moeck, Jonas P.
    Schuller, Thierry
    Veynante, Denis
    Lacoste, Deanna A.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (15)
  • [9] (Sub)nanosecond transient plasma for atmospheric plasma processing experiments: application to ozone generation and NO removal
    Huiskamp, T.
    Hoeben, W. F. L. M.
    Beckers, F. J. C. M.
    van Heesch, E. J. M.
    Pemen, A. J. M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (40)
  • [10] Generation of Antimicrobial NOx by Atmospheric Air Transient Spark Discharge
    Janda, M.
    Martisovits, V.
    Hensel, K.
    Machala, Z.
    [J]. PLASMA CHEMISTRY AND PLASMA PROCESSING, 2016, 36 (03) : 767 - 781