Biharmonic constant mean curvature surfaces in Killing submersions

被引:0
作者
Montaldo, Stefano [1 ]
Onnis, Irene I. [2 ]
Passamani, Apoena Passos [3 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Sao Paulo, Dept Matemat, CP 668 ICMC, BR-13560970 Sao Carlos, SP, Brazil
[3] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
基金
巴西圣保罗研究基金会;
关键词
Biharmonic surfaces; Constant mean curvature; Killing submersions; RIEMANNIAN-MANIFOLDS;
D O I
10.1016/j.geomphys.2018.05.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A 3-dimensional Riemannian manifold is called Killing submersion if it admits a Riemannian submersion over a surface such that its fibers are the trajectories of a complete unit Killing vector field. In this paper, we give a characterization of proper biharmonic CMC surfaces in a Killing submersion. In the last part, we also classify the proper biharmonic Hopf cylinders in a Killing submersion. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 18 条
  • [1] [Anonymous], 1998, Kyushu J. Math., DOI DOI 10.2206/KYUSHUJM.52.167
  • [2] [Anonymous], 1996, PROGR NONLINEAR DIFF
  • [3] [Anonymous], 2003, Harmonic Morphisms between Riemannian Manifolds
  • [4] [Anonymous], 1918, Lezioni sulla Teoria dei Gruppi Continui Finiti di Trasformazioni
  • [5] Willmore-Like Tori in Killing Submersions
    Barros, Manuel
    Garay, Oscar J.
    Pampano, Alvaro
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [6] Biharmonic submanifolds of S3
    Caddeo, R
    Montaldo, S
    Oniciuc, C
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (08) : 867 - 876
  • [7] Chen B.-Y., 2015, SERIER PURE MATH, V27
  • [8] Daniel B, 2007, COMMENT MATH HELV, V82, P87
  • [9] HARMONIC MAPPINGS OF RIEMANNIAN MANIFOLDS
    EELLS, J
    SAMPSON, JH
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (01) : 109 - &
  • [10] ANOTHER REPORT ON HARMONIC MAPS
    EELLS, J
    LEMAIRE, L
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 : 385 - 524