Compactification of a class of conformally flat 4-manifold

被引:57
作者
Chang, SYA [1 ]
Qing, J
Yang, PC
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
[4] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
关键词
D O I
10.1007/s002220000083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize Huber's result on complete surfaces of finite total curvature. For complete locally conformally flat 4-manifolds of positive scalar curvature with Q curvature integrable, where Q is a variant of the Chern-Gauss-Bonnet integrand; we first derive the Cohn-Vossen inequality. We then establish finiteness of the topology. This allows us to provide conformal compactification of such manifolds.
引用
收藏
页码:65 / 93
页数:29
相关论文
共 17 条
[1]  
AXLER S, 1992, GTM, V137
[2]   ESTIMATES AND EXTREMALS FOR ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
BRANSON, TP ;
CHANG, SYA ;
YANG, PC .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :241-262
[3]   EXTREMAL METRICS OF ZETA-FUNCTION DETERMINANTS ON 4-MANIFOLDS [J].
CHANG, SYA ;
YANG, PC .
ANNALS OF MATHEMATICS, 1995, 142 (01) :171-212
[4]   The zeta functional determinants on manifolds with boundary .1. The formula [J].
Chang, SYA ;
Qing, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 147 (02) :327-362
[5]  
CHANG SYA, IN PRESS DUKE MATH J
[6]  
CHEEGER J, 1985, DIFFERENTIAL GEOMETR, P115
[7]  
Cohn-Vossen S., 1935, COMPOS MATH, V2, P69
[8]  
Falconer K. J., 1985, The geometry of fractal sets
[10]   CINFINITY CONVEX FUNCTIONS AND MANIFOLDS OF POSITIVE CURVATURE [J].
GREENE, RE ;
WU, H .
ACTA MATHEMATICA, 1976, 137 (3-4) :209-245