A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation

被引:5
作者
Tarquini, Emilien [1 ]
机构
[1] Univ Picardie, Amiens, France
来源
MONATSHEFTE FUR MATHEMATIK | 2007年 / 151卷 / 04期
关键词
Gross-Pitaevskii equation; travelling waves;
D O I
10.1007/s00605-006-0443-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the Gross-Pitaevskii equation iu(t) = Delta u + u(1 - vertical bar u vertical bar(2)), where u is a complex- valued function defined on R-N x R, N >= 2, and in particular the travelling waves, i. e., the solutions of the form u(x, t) = v(x(1) - ct, x(2),..., x(N)), where c epsilon R is the speed. We prove for c fixed the existence of a lower bound on the energy of any non- constant travelling wave. This bound provides a non-existence result for non-constant travelling waves of fixed speed having small energy.
引用
收藏
页码:333 / 339
页数:7
相关论文
共 12 条